Corrigé FEUILLE N°2

Lycée Jean DROUANT

PROBABILITÉS ET SUITES

EXERCICE 1

PARTIE A

1. En appelant *X* le diamètre d'une pomme, on cherche $p(5,3 \le X \le 6,7)$.

A la calculatrice, on a : $p(5,3 \le X \le 6,7) \simeq 0,682$.

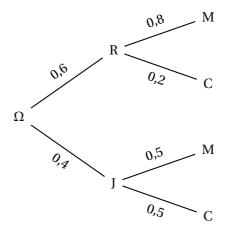
On peut aussi remarquer que l'intervalle [5,3 ; 6,7] est l'intervalle à « 1 sigma » et que l'intervalle à « 1 sigma » contient toujours environ 68,2 % des données.

La probabilité qu'une pomme soit vendue au marché est donc environ égale à 0,682.

2. La probabilité qu'une pomme serve à faire des compotes est donc environ égale à 0,318.

PARTIE B

1. Arbre de probabilités :



2. On a : $p(R \cap M) = p(R) \times p_R(M) = 0.6 \times 0.8 = 0.48$.

La probabilité que la pomme soit rouge et soit vendue au marché est égale à 0,48.

- **3. a.** On a : $p(M) = p(R \cap M) + p(J \cap M) = 0.48 + p(J) \times p_J(M) = 0.48 + 0.4 \times 0.5 = 0.68$. La probabilité qu'une pomme soit vendue au marché est bien égale à 68 %.
 - b. Ce résultat est bien cohérent avec celui obtenu à la question 1. de la PARTIE A.
- **4**. On cherche $p_{M}(R)$.

On a:
$$p_{M}(R) = \frac{p(M \cap R)}{p(M)} = \frac{0.48}{0.68} \approx 0.706.$$

La probabilité qu'une pomme soit rouge sachant qu'elle est achetée au marché est environ égale à 0,706.

EXERCICE 2

PARTIE A

1. On a: $t_{\text{global}} = \frac{y_2 - y_1}{y_1} = \frac{14\ 000 - 7\ 000}{7\ 000} = 1 = 100\ \%.$

Le nombre d'individus infectés en 3 jours augmente de 100 %.

2. On a : $1 + t_{\text{moyen}} = \left(1 + t_{\text{global}}\right)^{\frac{1}{3}} = 2^{\frac{1}{3}} \approx 1,26$. D'où : $t_{\text{moyen}} \approx 0,26$. Le nombre d'individus infectés augmente bien en moyenne d'environ 26 % chaque jour.

PARTIE B

1. On a: $u_1 = 1,26 \times u_0 = 1,26 \times 14000 = 17640$.

On a :
$$u_2 = 1,26 \times u_1 = 1,26 \times 17640 \approx 22226$$
.

2. Chaque jour, le nombre d'individus infectés augmente de 26 % donc, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 1,26 \times u_n$$

- **3**. D'après la **question** qui précède et par **DÉFINITION**, la suite (u_n) est une suite de géométrique de raison 1,26 et de premier terme 14 000.
- **4**. Par **PROPRIÉTÉ** d'une suite géométrique et, pour tout $n \in \mathbb{N}$:

$$u_n = 1,26^n \times 14\,000$$

5. On a : $u_7 = 1,26^7 \times 14\,000 \approx 70\,587$.

Le lundi suivant, le nombre d'individus infectés est environ égal à 70 587.

PARTIE C

1. Algorithme:

$$N \leftarrow 0$$
 $U \leftarrow 14\,000$
Tant que $U \le 1\,000\,000$
 $N \leftarrow N + 1$
 $U \leftarrow 1,26 \times U$

Fin Tant que

2. A la calculatrice, on obtient successivement : $u_{18} \simeq 897\,011$ et $u_{19} \simeq 1\,130\,234$.

Comme la suite (u_n) est une suite croissante, alors le nombre de jours écoulés depuis le lundi à partir duquel le nombre d'individus infectés dépassera 1 000 000 est égal à 19.

On peut aussi retrouver ce résultat en résolvant l'inéquation $1,26^x \times 14\,000 > 1\,000\,000$:

$$1,26^{x} \times 14\ 000 > 1\ 000\ 000 \Leftrightarrow 1,26^{x} > \frac{1\ 000\ 000}{14\ 000} \Leftrightarrow x > \frac{\log \frac{1\ 000\ 000}{14\ 000}}{\log 1,26} (\approx 18,47)$$

Le plus petit entier supérieur à 18,47 est l'entier 19.