Mercredi 14 Décembre 2022

Lycée Jean DROUANT

FONCTION LOGARITHME DÉCIMAL

~ 5 points **EXERCICE 1**

- L'écriture scientifique d'un réel positif x est l'unique écriture de la forme a × 10^p, où le réel a ∈ [1 ; 10[est appelé la mantisse et où l'entier relatif p est appelé l'exposant.
 Par exemple, 2 020 = 2,02 × 10³ et 0,075 = 7,5 × 10⁻².
- La *partie entière* d'un réel y, notée E(y), est l'entier relatif inférieur le plus proche. Par exemple, E(3,14) = 3 et E(-5,2) = -6.
 - 1. Compléter le tableau, où $a \times 10^p$ est l'écriture scientifique de x. On arrondira les logarithmes à trois chiffres après la virgule.

x	0,002 3	123,45	0,24	3 500
$\log(x)$				
$E(\log(x))$				
$a \times 10^p$				

2. Comparer les lignes 3 et 4 du tableau. Quelle propriété peut-on conjecturer? On essaiera de démontrer cette propriété en classe.

~ 7 points **EXERCICE 2**

Lors d'un krach boursier, le cours d'une action, en euros, après x heures depuis l'ouverture de la bourse, est donné par l'expression $f(x) = 50 \times 0.95^x$.

La bourse ouvre à 9h00 et ferme à 17h00.

- 1. Relever le cours de l'action à l'ouverture de la bourse.
- 2. Calculer le cours de l'action à la fermeture de la bourse.
- 3. A quelle heure, à la minute près, le cours de l'action est-il égal à 40 euros?

~ 8 points **EXERCICE 3**

Le 1^{er} janvier 2010, j'ai placé un premier capital de 1 000 euros à intérêts composés au taux annuel de 2 % et un deuxième capital de 500 euros à intérêts composés au taux annuel de 4 %. Au bout de x années, les capitaux acquis sont donnés par les expressions $f_1(x) = 1 000 \times 1,02^x$ et $f_2(x) = 500 \times 1,04^x$.

- 1. Pour chaque placement, calculer le capital acquis le 1^{er} janvier 2020.
- **2**. Expliquer pourquoi : $f_1(x) < f_2(x) \Leftrightarrow \log(1\ 000) + x \log(1,02) < \log(500) + x \log(1,04)$.
- 3. Un jour, le deuxième placement sera plus intéressant que le premier. A quelle date?