Lycée Jean DROUANT École Hôtelière de PARIS 20, rue Médéric 75 017 PARIS

Cours de Mathématiques Terminale STHR

Emmanuel DUPUY
Emmanuel-R.Dupuy@ac-paris.fr

Paris Année 2024-2025

TABLE DES MATIÈRES

CHAPITRE	1. Suites numériques	
§ 1.	Suites arithmétiques	4
a.	Suite arithmétique	4
b.	Expression de u_n en fonction de n	5
c.	Lien avec la moyenne arithmétique	5
d.	Somme de termes consécutifs d'une suite arithmétique	6
§ 2.	Suites géométriques	6
a.	Suite géométrique	6
b.	Expression de u_n en fonction de n	7
c.	Lien avec la moyenne géométrique	7
d.	Somme de termes consécutifs d'une suite géométrique	7
CHAPITRE	2. Fonctions exponentielles	
§ 1.	Fonctions exponentielles	8
a.	Fonction exponentielle de base <i>a</i>	8
b.	Sens de variations	9
c.	Positivité	9
d.	Représentation graphique	9
§ 2.	Propriétés algébriques	10
a.	Propriétés de la fonction exponentielle de base a	10
b.	Racine <i>n</i> -ième d'un réel positif	10
c.	Application au calcul du taux moyen	10
CHAPITRE	3. Séries statistiques à deux variables	
§ 1.	Séries statistiques à deux variables	11
a.	Série statistique double	
b.		
§ 2.	Ajustements affines	12
a.	Point moyen	12
b.	Ajustement affine	12
c.	Estimations à l'aide d'un ajustement affine	
CHAPITRE	4. Fonction logarithme décimal	
§ 1.	Fonction logarithme décimal	14
a.		
b.		
c.	Fonction logarithme décimal	
d.	8	
e.		

§ 2.	Propriétés algébriques	16
a.	Propriétés de la fonction logarithme décimal	16
b.	Résolution d'une équation du type $a^x = b$	16
CHAPITRE	5. Probabilités	
§ 1.	Probabilités conditionnelles	17
a.	Probabilité conditionnelle	17
b.	F F	
§ 2.	Indépendance	
a.	P	
b.	Expériences aléatoires indépendantes	20
CHAPITRE	6. Fonction inverse	
§ 1.	Fonction inverse	21
a.	Fonction inverse	21
b.	Limites aux bornes	21
c.		
d.		
e.		
§ 2.	Étude d'une fonction rationnelle	
a.		
b.	Étude de la somme d'une fonction affine et d'une fonction inverse	24
CHAPITRE	7. Variables aléatoires	
§ 1.	Variables aléatoires	
a.		
b.	P P	
c.	· P	
§ 2.	Loi binomiale	
a.		
b.		
c.	Coefficients binomiaux	
d.	Triangle de Pascal	29
ANNEXE A	. Optimisation linéaire	
§ 1.	Système des contraintes	30
§ 2.	Domaine des contraintes	
§ 3.	Optimisation linéaire	32
ANNEXE B	. Graphes	
§ 1.	Graphe d'ordonnancement des tâches	34
§ 2.	Optimisation de la durée de la recette	35
ANNEXE C	. Méthode de Monte-Carlo	
§ 1.	Nuage de points aléatoires	36
§ 2.	Script Python	

CHAPITRE

SUITES NUMÉRIQUES

CONNAISSANCES ET CAPACITÉS

Suites arithmétiques :

- Moyenne arithmétique de deux nombres.
- Expression en fonction de *n* du terme de rang *n*.
- Somme des n premiers termes d'une suite arithmétique; notation Σ .

Suites géométriques à termes positifs :

- Moyenne géométrique de deux nombres positifs.
- Expression en fonction de n du terme de rang n.
- Somme des n premiers termes d'une suite géométrique; notation Σ .
- Prouver que trois nombres sont (ou ne sont pas) les termes consécutifs d'une suite arithmétique ou géométrique.
- Déterminer la raison d'une suite arithmétique ou géométrique modélisant une évolution.
- Exprimer en fonction de n le terme général d'une suite arithmétique ou géométrique.
- Calculer la somme des n premiers termes d'une suite arithmétique ou géométrique.
- Reconnaître une situation relevant du calcul d'une somme de termes consécutifs d'une suite arithmétique ou géométrique.

§ 1. Suites arithmétiques

a. Suite arithmétique

DÉFINITION

Soit r un réel.

Une suite (u_n) est une *suite arithmétique* de *raison r* lorsque, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n + r$$

EXEMPLE

• Économies

Le 1er janvier 2020, j'économise 100 €.

Chaque 1er jour des mois suivants, j'économise 15 € supplémentaires.

On note u_n les économies au bout de n mois depuis le 1^{er} janvier 2020.

Puisque chaque 1^{er} jour du mois, j'économise 15 \in , alors pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + 15$.

Par **DÉFINITION**, la suite (u_n) des économies est une suite arithmétique de premier terme $u_0 = 100$ et de raison r = 15.

b. Expression de u_n en fonction de n

PROPRIÉTÉ

Si (u_n) est une suite arithmétique de raison r, alors, pour tout $n \in \mathbb{N}$:

$$u_n = u_0 + n \times r$$

EXEMPLE

Économies

La suite (u_n) est une suite arithmétique de premier terme 100 et de raison 15 donc, par **PRO-PRIÉTÉ**, pour tout $n \in \mathbb{N}$: $u_n = 100 + 15n$.

Par exemple le 1^{er} janvier 2021, n = 12 et $u_{12} = 100 + 15 \times 12 = 280$.

Ainsi, au bout d'un an, j'aurai économisé 280 €.

COROLLAIRE

Si (u_n) est une suite arithmétique de raison r, alors, pour tout $n \in \mathbb{N}$, pour tout $p \in \mathbb{N}$:

$$u_n = u_p + (n - p) \times r$$

EXEMPLE

Économies

Par exemple le 1^{er} janvier 2023, n = 36 et $u_{36} = u_{12} + 15 \times (36 - 12) = 280 + 15 \times 24 = 640$. Ainsi, au bout de trois ans, j'aurai économisé 640 €.

c. Lien avec la moyenne arithmétique

DÉFINITION

La moyenne arithmétique de deux réels a et b est égale à $\frac{a+b}{2}$.

Propriété

Pour que trois réels x, y et z soient les termes consécutifs d'une suite arithmétique, il faut et il suffit que le réel y soit égal à la moyenne arithmétique des réels x et z.

EXEMPLE

Puisque $\frac{1+9}{2}$ = 5, alors 1, 5 et 9 sont les termes consécutifs d'une suite arithmétique.

d. Somme de termes consécutifs d'une suite arithmétique

Propriété

La somme S de p termes consécutifs d'une suite arithmétique dont le premier terme est a et le dernier terme est b est donnée par :

$$S = \frac{a+b}{2} \times p$$

EXEMPLE

• $S = 0 + 1 + ... + n = \sum_{k=0}^{n} k$

La somme S est la somme de n+1 termes consécutifs d'une suite arithmétique dont le premier terme est 0 et le dernier terme est n donc :

$$S = \frac{0+n}{2} \times (n+1) = \frac{n \times (n+1)}{2}$$

• $S = u_0 + u_1 + ... + u_n = \sum_{k=0}^{n} u_k$ où (u_n) est une suite arithmétique

La somme S est la somme de n+1 termes consécutifs d'une suite arithmétique dont le premier terme est u_0 et le dernier terme est u_n donc :

$$S = \frac{u_0 + u_n}{2} \times (n+1)$$

§ 2. Suites géométriques

a. Suite géométrique

DÉFINITION

Soit q un réel strictement positif.

Une suite (u_n) est une *suite géométrique* de *raison q* lorsque, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = q \times u_n$$

EXEMPLE

Population

Le 1er janvier 2010, la population d'une ville nouvelle est de 10 000 habitants.

La population augmente régulièrement de 5 % par an.

On note u_n la population de la ville au bout de n années depuis le 1^{er} janvier 2010.

Puisque la population augmente de 5 % par an, alors pour tout $n \in \mathbb{N}$: $u_{n+1} = 1,05 \times u_n$.

Par **DÉFINITION**, la suite (u_n) des populations est une suite géométrique de premier terme $u_0 = 10\,000$ et de raison q = 1,05.

b. Expression de u_n en fonction de n

Propriété

Si (u_n) est une suite géométrique de raison q, alors, pour tout $n \in \mathbb{N}$:

$$u_n = q^n \times u_0$$

EXEMPLE

Population

La suite (u_n) est une suite géométrique de premier terme 10 000 et de raison 1,05 donc, par **PROPRIÉTÉ**, pour tout $n \in \mathbb{N}$: $u_n = 1,05^n \times 10 000$.

Par exemple le 1^{er} janvier 2020, n = 10 et $u_{10} = 1,05^{10} \times 10\,000 \simeq 16\,289$.

Ainsi, au bout de dix ans, la population sera d'environ 16 289 habitants.

c. Lien avec la moyenne géométrique

DÉFINITION

La moyenne géométrique de deux réels positifs a et b est égale à $\sqrt{a \times b}$.

PROPRIÉTÉ

Pour que trois réels positifs x, y et z soient les termes consécutifs d'une suite géométrique, il faut et il suffit que le réel y soit égal à la moyenne géométrique des réels x et z.

EXEMPLE

Puisque $\sqrt{2 \times 32} = 8$, alors 2, 8 et 32 sont les termes consécutifs d'une suite géométrique.

d. Somme de termes consécutifs d'une suite géométrique

PROPRIÉTÉ

La somme S de p termes consécutifs d'une suite géométrique de raison $q \neq 1$ dont le premier terme est a est donnée par :

$$S = a \times \frac{1 - q^p}{1 - a}$$

$\mathbf{E}\mathbf{X}\mathbf{E}\mathbf{M}\mathbf{P}\mathbf{L}\mathbf{E}$

• $S = 1 + q + ... + q^n = \sum_{k=0}^{n} q^k$

La somme S est la somme de n+1 termes consécutifs d'une suite géométrique de raison $q \neq 1$ dont le premier terme est 1 donc :

$$S = 1 \times \frac{1 - q^{n+1}}{1 - q} = \frac{1 - q^{n+1}}{1 - q}$$

CHAPITRE

2

FONCTIONS EXPONENTIELLES

CONNAISSANCES ET CAPACITÉS

Les fonctions $x \mapsto a^x$ (a > 0) comme modèle continu d'évolution relative constante :

- Définition de la fonction $x \mapsto a^x$ pour x positif.
- Extension à \mathbb{R}^- .
- Sens de variation selon les valeurs de *a*.
- Allure de la courbe représentative selon les valeurs de *a*.
- Propriétés algébriques.
- Cas de l'exposant $\frac{1}{n}$ pour calculer un taux d'évolution moyen équivalent à n évolutions successives.
- Connaître et utiliser le sens de variation des fonctions de la forme x → ka^x, selon le signe de k et les valeurs de a.
- Connaître les propriétés algébriques des fonctions exponentielles et les utiliser pour transformer des écritures numériques ou littérales.
- Calculer le taux d'évolution moyen équivalent à des évolutions successives.

§ 1. Fonctions exponentielles

a. Fonction exponentielle de base a

DÉFINITION

Soit a un réel strictement positif.

La fonction exponentielle de base a est la fonction définie sur $\mathbb R$ de la manière suivante :

- Sur \mathbb{R}^+ comme le prolongement à l'ensemble des réels positifs de la suite géométrique (u_n) définie pour tout entier n par $u_n = a^n$.
- Sur \mathbb{R}^- en convenant que pour tout réel positif x:

$$a^{-x} = \frac{1}{a^x}$$

On note:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto a^{x}$$

b. Sens de variations

Propriété

Soit f la fonction exponentielle de base a > 0.

- Si a > 1, alors la fonction f est strictement croissante.
- Si a < 1, alors la fonction f est strictement décroissante.

EXEMPLE

• $x \mapsto -3 \times 1,2^x$

Comme 1,2 > 1, alors la fonction $x \mapsto 1,2^x$ est strictement croissante sur \mathbb{R} .

Comme -3 < 0, alors la fonction $x \mapsto -3 \times 1, 2^x$ est strictement décroissante sur \mathbb{R} .

c. Positivité

PROPRIÉTÉ

Pour tout réel a > 0, pour tout réel x:

$$a^x > 0$$

Autrement dit, la fonction exponentielle de base a est strictement positive.

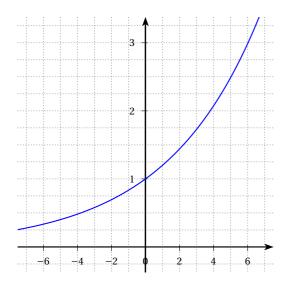
d. Représentation graphique

PROPRIÉTÉ

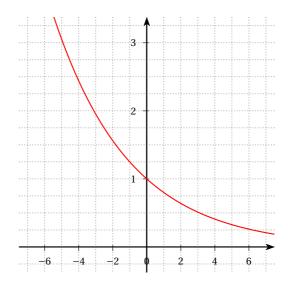
La représentation graphique de la fonction exponentielle de base a>0 est une *courbe exponentielle* qui passe par le point de coordonnées (0;1).

EXEMPLE

•
$$f(x) = 1,2^x$$



•
$$g(x) = 0.8^x$$



§ 2. Propriétés algébriques

a. Propriétés de la fonction exponentielle de base a

Propriété

Pour tout réel a > 0, pour tous réels x et y, et pour tout entier relatif n:

•
$$a^{x+y} = a^x \times a^y$$
 • $a^{x-y} = \frac{a^x}{a^y}$ • $a^{nx} = (a^x)^n$

$$\bullet \ a^{x-y} = \frac{a^x}{a^y}$$

$$\bullet \quad a^{nx} = (a^x)^n$$

REMARQUE

Cette PROPRIÉTÉ sert à simplifier des expressions algébriques.

b. Racine n-ième d'un réel positif

DÉFINITION

Soit *n* un entier naturel non nul.

La *racine n-ième* d'un réel a > 0 est le réel positif x tel que : $x^n = a$.

PROPRIÉTÉ

Soit *n* un entier naturel non nul.

La racine *n*-ième d'un réel a > 0 est égale à $a^{\frac{1}{n}}$.

EXEMPLE

La racine cubique de 64 est égale à 4 car $4^3 = 64 \Leftrightarrow 64^{\frac{1}{3}} = 4$.

c. Application au calcul du taux moyen

MÉTHODE

Pour calculer un taux moyen t_{moyen} équivalent à un taux global t_{global} sur une période n fois plus petite, on utilise la formule:

$$1 + t_{\text{moyen}} = \left(1 + t_{\text{global}}\right)^{\frac{1}{n}}$$

EXEMPLE

• En 6 mois, le prix d'un bien de consommation a diminué de 12 %. On connait $t_{\text{semestriel}} = -12 \%$. On peut calculer t_{mensuel} . On a:

$$1 + t_{\text{mensuel}} = (1 + t_{\text{semestriel}})^{\frac{1}{n}} = 0.88^{\frac{1}{6}} \approx 0.978 \text{ 9}$$
$$t_{\text{mensuel}} \approx 0.978 \text{ 9} - 1 \approx -0.021 \text{ 1} \approx -2.11 \text{ \%}$$

La baisse mensuelle moyenne est environ égale à 2,11 %.

CHAPITRE

3

SÉRIES STATISTIQUES À DEUX VARIABLES

CONNAISSANCES ET CAPACITÉS

- Nuage de points associé à une série statistique à deux variables quantitatives.
- Ajustement affine.
- Représenter un nuage de points.
- Déterminer et utiliser un ajustement affine pour interpoler ou extrapoler des valeurs inconnues.
- Représenter un nuage de points en effectuant un changement de variable donné afin de conjecturer une relation de linéarité entre les nouvelles variables.

§ 1. Séries statistiques à deux variables

a. Série statistique double

DÉFINITION

Une *série statistique double* est le résultat de l'étude statistique de deux variables X et Y. On note x_i les valeurs de la variable X et y_i les valeurs correspondantes de la variable Y.

EXEMPLE

Burgers

Le tableau suivant présente l'évolution de la consommation de burgers, en milliard, par les français entre 2012 et 2015:

Année	2012	2013	2014	2015
Rang de l'année x_i	0	1	2	3
Nombre de burgers consommés y_i	0,92	0,97	1,07	1,19

Les variables X et Y sont le rang de l'année et le nombre de burgers consommés.

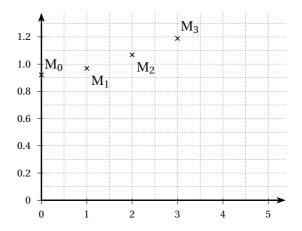
b. Nuage de points

DÉFINITION

Dans un repère orthogonal, l'ensemble des points M_i de coordonnées $(x_i; y_i)$ est appelé le *nuage de points* associé à la série statistique à deux variables X et Y.

EXEMPLE

• Burgers



§ 2. Ajustements affines

a. Point moyen

DÉFINITION

On note \overline{x} et \overline{y} les moyennes respectives des valeurs des variables X et Y.

Le point G de coordonnées $(\overline{x}; \overline{y})$ est appelé le *point moyen* du nuage de points associé à la série statistique à deux variables X et Y.

EXEMPLE

Burger

On a:
$$\overline{x} = \frac{0+1+2+3}{4} = 1.5$$
 et $\overline{y} = \frac{0.92+0.97+1.07+1.19}{4} = 1.037$ 5.

Le point moyen G est le point de coordonnées (1,5; 1,037 5).

b. Ajustement affine

DÉFINITION

Lorsque le nuage de points d'une série statistique double a une forme « allongée », on peut tracer une droite (ou plusieurs) qui passe « le plus près possible » des points du nuage.

On dit qu'une telle droite réalise un ajustement affine du nuage de points.

Propriété

Il existe une unique droite passant par le point moyen du nuage et qui minimise la somme des carrés des « écarts verticaux » des points du nuage à cette droite.

Cette droite est appelée la droite d'ajustement affine par la méthode des moindres carrés ou la droite de régression de y en x.

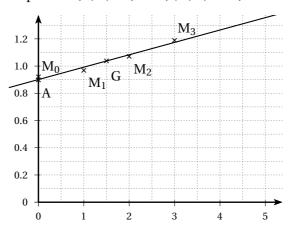
EXEMPLE

• Burgers

Le nuage de points de la série statistique à deux variables X et Y a une forme « allongée » donc on peut réaliser un ajustement affine du nuage.

On choisit la droite (*d*) de régression de *y* en *x* et à la calculatrice, on obtient l'équation : y = 0.091x + 0.901.

La droite (d) passe par les points A(0; 0,901) et G(1,5; 1,037 5).



c. Estimations à l'aide d'un ajustement affine

EXERCICE

En utilisant la droite de régression (*d*) :

- 1. Prévoir le nombre de burgers consommés par les français en 2020.
- 2. Prévoir en quelle année les français consommeront 2 milliards de burgers.

SOLUTION

- 1. En 2020, x = 8 et $y = 0.091 \times 8 + 0.901 = 1.629$. En 2020, les français consommeront 1 milliard 629 millions de burgers.
- 2. On a par équivalences successives :

$$y = 2 \Leftrightarrow 0.091x + 0.901 = 2 \Leftrightarrow 0.091x = 1.099 \Leftrightarrow x \approx 12$$

Lorsque x = 12, c'est à dire en 2024, les français consommeront 2 milliards de burgers.

CHAPITRE

FONCTION LOGARITHME DÉCIMAL

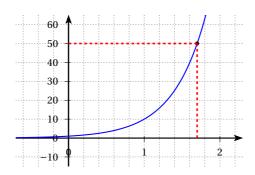
CONNAISSANCES ET CAPACITÉS

- Définition du logarithme décimal de b pour b > 0.
- · Notation log.
- Sens de variation.
- Propriétés algébriques.
- Utiliser le logarithme décimal pour résoudre une équation du type a^x = b ou une inéquation du type a^x < b.
- Utiliser les propriétés algébriques de la fonction logarithme décimal pour transformer des expressions numériques ou littérales.

§ 1. Fonction logarithme décimal

a. Résolution graphique d'une équation du type $10^x = b$

EXEMPLE



Graphiquement, l'unique solution de l'équation $10^x = 50$ est environ égale à 1,7.

b. Logarithme décimal

DÉFINITION

Soit *b* un réel strictement positif.

Le *logarithme décimal* de b, noté log(b), est l'unique réel x tel que lox = b.

EXEMPLE

- log(1) = 0
- $\log(50) \simeq 1,69$
- log(100) = 2
- $log(1\ 000\ 000) = 6$

c. Fonction logarithme décimal

DÉFINITION

La fonction qui à tout réel b>0 associe son logarithme décimal $\log(b)$ s'appelle la fonction logarithme décimal.

On note:

$$\log:]0; +\infty[\to \mathbb{R}$$
$$b \mapsto \log(b)$$

d. Sens de variations

PROPRIÉTÉ

La fonction logarithme décimal est strictement croissante sur]0; $+\infty$ [.

COROLLAIRE

Soit b > 0.

- Si b > 1, alors $\log(b) > 0$.
- Si b < 1, alors $\log(b) < 0$.

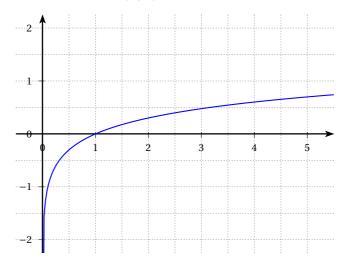
REMARQUE

La croissance de la fonction logarithme décimal est extrêmement lente.

e. Représentation graphique

Propriété

La représentation graphique de la fonction logarithme décimal est une *courbe logarithmique* qui passe par le point de coordonnées (1 ; 0).



§ 2. Propriétés algébriques

a. Propriétés de la fonction logarithme décimal

PROPRIÉTÉ

Pour tous réels a > 0 et a > 0, et pour tout entier naturel n:

• $\log(a^n) = n\log(a)$

• $\log(ab) = \log(a) + \log(b)$ • $\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$

REMARQUE

Cette **PROPRIÉTÉ** sert à simplifier des expressions algébriques ou à résoudre des équations et des inéquations.

b. Résolution d'une équation du type $a^x = b$

PROPRIÉTÉ

Soient a et b deux réels strictement positifs, avec $a \neq 1$.

L'unique solution de l'équation $a^x = b$ est le réel x donné par :

$$x = \frac{\log(b)}{\log(a)}$$

COROLLAIRE

Soient a et b deux réels strictement positifs, avec $a \neq 1$.

- Si a > 1, alors : $a^x > b \Leftrightarrow x > \frac{\log(b)}{\log(a)}$. Si a < 1, alors : $a^x > b \Leftrightarrow x < \frac{\log(b)}{\log(a)}$.

EXERCICE

Un litre de vinaigre réduit de 40 % chaque minute.

A partir de combien de temps le vinaigre a-t-il réduit d'au moins 90 %?

SOLUTION

Soit f(x) la quantité de vinaigre, en litre, au bout de x minutes.

On a : $f(x) = 0.60^x$.

On cherche la plus petite valeur de x telle que $f(x) \le 0.10$.

Par équivalences successives : $f(x) \le 0.10 \Leftrightarrow 0.60^x \le 0.10 \Leftrightarrow x \ge \frac{\log(0.10)}{\log(0.60)}$.

Or:
$$\frac{\log(0,10)}{\log(0,60)} \simeq 4,51$$
.

Par conséquent, la quantité de vinaigre a réduit d'au moins 90 % après un peu plus de 4 minutes et 30 secondes.

CHAPITRE

5

PROBABILITÉS

CONNAISSANCES ET CAPACITÉS

- Conditionnement par un événement de probabilité non nulle.
- Indépendance de deux événements de probabilités non nulles.
- Formule des probabilités totales pour une partition de l'univers.
- Construire un arbre de probabilités associé à une situation aléatoire donnée.
- Interpréter les pondérations de chaque branche d'un arbre en termes de probabilités, et notamment de probabilités conditionnelles.
- Faire le lien entre la définition des probabilités conditionnelles et la multiplication des probabilités des branches du chemin correspondant.
- Utiliser un arbre de probabilités pour calculer des probabilités.
- Calculer la probabilité d'un événement connaissant ses probabilités conditionnelles relatives à une partition de l'univers.

§ 1. Probabilités conditionnelles

a. Probabilité conditionnelle

EXEMPLE

Le tableau d'effectifs suivant donne la répartition en LV2 des 500 élèves d'un lycée :

	Allemand	Espagnol	Total
Filles	140	60	200
Garçons	180	120	300
Total	320	180	500

On tire au hasard, parmi le fichier des élèves du lycée, la fiche d'un élève et on veut calculer de deux manières la probabilité que l'élève soit une fille germaniste, c'est à dire $p(A \cap F)$, en notant F l'événement : « l'élève est une fille » et A l'événement : « l'élève est germaniste ».

1^{ère} manière :

$$p(A \cap F) = \frac{\text{nbre de filles germanistes}}{\text{nbre d'élèves}} = \frac{140}{500} = 0,28$$

2ème manière :

$$p(A \cap F) = \frac{\text{nbre de germanistes}}{\text{nbre d'élèves}} \times \frac{\text{nbre de filles germanistes}}{\text{nbre de germanistes}} = \frac{320}{500} \times \frac{140}{320} = 0,28$$

Ainsi, en notant $p_A(F)$ la probabilité que l'élève soit une fille sachant que l'élève est germaniste, on a : $p(A \cap F) = p(A) \times p_A(F)$.

Chapitre 5. Probabilités 17

DÉFINITION

On considère une loi de probabilité sur un univers Ω et un événement A tel que $p(A) \neq 0$. Pour tout événement B, la *probabilité de* B *sachant* A, notée $p_A(B)$, est définie par :

$$p_{\mathbf{A}}(\mathbf{B}) = \frac{p(\mathbf{A} \cap \mathbf{B})}{p(\mathbf{A})}$$

COROLLAIRE

Dans les conditions précédentes :

$$p(A \cap B) = p(A) \times p_A(B)$$

EXERCICE

On tire successivement et sans remise deux boules d'une urne contenant cinq boules rouges et deux boules bleues.

Quelle est la probabilité de tirer deux boules rouges?

SOLUTION

On note les événements A : « la $1^{\`{e}re}$ boule est rouge » et B : « la $2^{\`{e}me}$ boule est rouge ».

On cherche $p(A \cap B)$.

On a:
$$p(A \cap B) = p(A) \times p_A(B) = \frac{5}{7} \times \frac{4}{6} = \frac{20}{42} = \frac{10}{21}$$
.

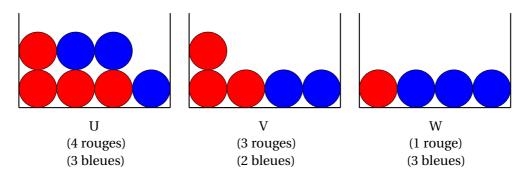
b. Arbre pondéré et formule des probabilités totales

EXEMPLE

• Urnes U, V et W

On considère les trois urnes U, V et W schématisées ci-dessous.

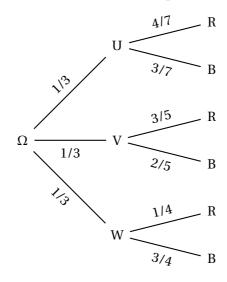
On choisit une urne au hasard puis on tire une boule au hasard dans cette urne.



On note:

- o U l'événement : « l'urne choisie est l'urne U ».
- o V l'événement : « l'urne choisie est l'urne V ».
- o W l'événement : « l'urne choisie est l'urne W ».
- o B l'événement : « la boule tirée est bleue ».

L'arbre pondéré qui schématise le déroulement de l'expérience est le suivant :



MÉTHODE

Un arbre pondéré schématise le déroulement d'une expérience aléatoire.

Il est constitué:

- de nœuds, sur lesquels sont indiqués des événements.
- de branches, auxquelles sont affectées des probabilités.
- de chemins que l'on assimile à des intersections d'événements.

EXEMPLE

• Urnes U, V et W

La probabilité d'une intersection d'événements correspondant à un chemin est égale au produit des probabilités affectées à chaque branche de ce chemin.

Par exemple, par le chemin du haut : $p(U \cap R) = p(U) \times p_U(R) = \frac{1}{3} \times \frac{4}{7} = \frac{4}{21}$.

On retrouve la formule du COROLLAIRE de la DÉFINITION d'une probabilité conditionnelle.

La somme des probabilités affectées aux branches d'un même nœud est égale à 1.

Par exemple, depuis le nœud Ω : $p(U) + p(V) + p(W) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$.

On dit que les événements incompatibles deux à deux U, V et W forment une *partition de l'univers*.

La probabilité d'un événement est égale à la somme des probabilités des chemins conduisant à l'événement.

Par exemple:

$$p(R) = p(U \cap R) + p(V \cap R) + p(W \cap R)$$

$$= p(U) \times p_U(R) + p(V) \times p_V(R) + p(W) \times p_W(R) = \frac{1}{3} \times \frac{4}{7} + \frac{1}{3} \times \frac{3}{5} + \frac{1}{3} \times \frac{1}{4} = \frac{199}{420}$$

La dernière formule s'appelle la formule des probabilités totales.

20

§ 2. Indépendance

a. Indépendance de deux événements

DÉFINITION

On considère une loi de probabilité sur un univers Ω , et un événement A tel que $p(A) \neq 0$. On dit qu'un événement B est *indépendant* de l'événement A lorsque :

$$p_{\mathbf{A}}(\mathbf{B}) = p(\mathbf{B})$$

EXEMPLE

• On lance un dé cubique non pipé numéroté de 1 à 6 et on note le numéro obtenu.

Soit A l'événement : « le chiffre obtenu est un multiple de 3 ».

Soit B l'événement : « le chiffre obtenu est supérieur ou égal à 4 ».

On a $p(B) = \frac{3}{6} = \frac{1}{2}$ car parmi les six numéros, il y a trois numéros supérieurs ou égaux à 4.

On a $p_A(B) = \frac{1}{2}$ car parmi les deux multiples de 3, il y a un numéro supérieur ou égal à 4.

Comme $p_A(B) = p(B)$, alors l'événement B est indépendant de l'événement A.

Propriété

Dans les conditions précédentes et si $p(B) \neq 0$, alors :

$$p_{\rm B}({\rm A}) = p({\rm A})$$

De sorte que l'événement A est indépendant de l'événement B.

DÉFINITION

Dans les conditions précédentes, on dit que les événements A et B sont deux *événements indé*pendants et on a :

$$p(A \cap B) = p(A) \times p(B)$$

b. Expériences aléatoires indépendantes

DÉFINITION

On dit que deux expériences aléatoires successives sont des *expériences aléatoires indépendantes* lorsque le résultat de l'une des expériences ne dépend pas du résultat de l'autre expérience.

MÉTHODE

Dans le cas où les expériences aléatoires successives sont indépendantes, on admettra que la probabilité d'une liste d'issues pour la méga expérience est égale au produit des probabilités de chaque issue pour chaque expérience.

CHAPITRE

FONCTION INVERSE

CONNAISSANCES ET CAPACITÉS

- Comportement de la fonction inverse aux bornes de son ensemble de définition.
- Dérivée et sens de variation.
- Courbe représentative et asymptotes.
- Étudier des fonctions obtenues par combinaisons linéaires de la fonction inverse et de fonctions polynomiales de degré au maximum 3.

§ 1. Fonction inverse

a. Fonction inverse

DÉFINITION

La fonction inverse est la fonction f définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x)=\frac{1}{x}$.

EXEMPLE

•
$$f(4) = \frac{1}{4} = 0.25$$

•
$$f\left(\frac{2}{3}\right) = \frac{3}{2} = 1,5$$

•
$$f(4) = \frac{1}{4} = 0.25.$$
 • $f(-5) = \frac{1}{-5} = -0.2.$

Limites aux bornes

REMARQUE

• Lorsque un réel prend des valeurs de plus en plus grandes vers +∞, son inverse prend des valeurs de plus en plus proches de 0.

Lorsque un réel prend des valeurs de plus en plus petites vers $-\infty$, son inverse prend des valeurs de plus en plus proches de 0.

On note:
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to -\infty} \frac{1}{x} = 0$.

• Lorsque un réel prend des valeurs de plus en plus proches de 0 en restant positif, son inverse prend des valeurs de plus en plus grandes vers $+\infty$.

Lorsque un réel prend des valeurs de plus en plus proches de 0 en restant négatif, son inverse prend des valeurs de plus en plus petites vers $-\infty$.

On note:
$$\lim_{r\to 0^+} \frac{1}{r} = +\infty$$
 et $\lim_{r\to 0^-} \frac{1}{r} = -\infty$.

c. Dérivée

Propriété

La fonction inverse est dérivable sur chacun des intervalles $]-\infty$; 0[et $]0; +\infty[$ et en notant f' sa fonction dérivée, on a :

$$f'(x) = -\frac{1}{x^2}$$

d. Sens de variations

PROPRIÉTÉ

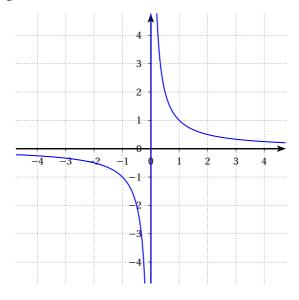
La fonction inverse est décroissante sur chacun des intervalles $]-\infty$; 0[et $]0; +\infty[$.

x	$-\infty$	0	+∞
$\frac{1}{x}$	0	+∞ -∞ +∞	0

e. Représentation graphique

Propriété

La courbe représentative de la fonction inverse dans un repère (O ; I, J) est une *hyperbole* de centre de symétrie l'origine O.



REMARQUE

- L'axe des abscisses est une *asymptote horizontale* en $+\infty$ et en $-\infty$ à la courbe de la fonction inverse.
- L'axe des ordonnées est une asymptote verticale à la courbe de la fonction inverse.

§ 2. Étude d'une fonction rationnelle

a. Étude de la somme d'une fonction constante et d'une fonction inverse

EXERCICE

Étudier la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = 2 + \frac{3}{x}$.

SOLUTION

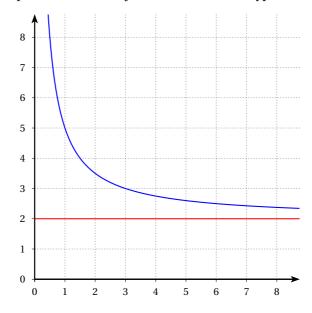
- La fonction f est de la forme u + v avec u(x) = 2 et $v(x) = \frac{3}{x}$.
- On a: $\lim_{x \to +\infty} 2 = 2$ et $\lim_{x \to +\infty} \frac{3}{x} = 0$ donc, par limite d'une somme: $\lim_{x \to +\infty} f(x) = 2$.
- On a: $\lim_{x\to 0^+} 2 = 2$ et $\lim_{x\to 0^+} \frac{3}{x} = +\infty$ donc, par limite d'une somme : $\lim_{x\to 0^+} f(x) = +\infty$.
- On a : u'(x) = 0 et $v'(x) = -\frac{3}{x^2}$ donc, par dérivée d'une somme : $f'(x) = -\frac{3}{x^2}$. Pour tout réel $x \in]0$; $+\infty[$, f'(x) < 0.

Par conséquent, la fonction f est décroissante sur l'intervalle]0 ; $+\infty$ [.

Le tableau de variations de la fonction f est donné par :

x	0	+∞
f'(x)		_
f(x)	+∞	2

• La représentation graphique de la fonction *f* est une branche d'hyperbole.



La droite d'équation y = 2 est une asymptote horizontale en $+\infty$ à la courbe de la fonction f. L'axe des ordonnées est une asymptote verticale à la courbe de la fonction f.

b. Étude de la somme d'une fonction affine et d'une fonction inverse

EXERCICE

Étudier la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = x + 1 + \frac{1}{x}$.

SOLUTION

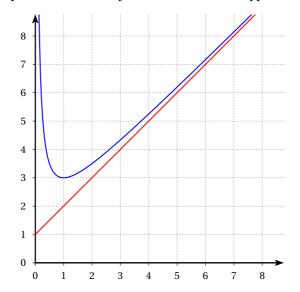
- La fonction f est de la forme u + v avec u(x) = x + 1 et $v(x) = \frac{1}{x}$.
- On a: $\lim_{x \to +\infty} x + 1 = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc, par limite d'une somme: $\lim_{x \to +\infty} f(x) = +\infty$.
- On a: $\lim_{x\to 0^+} x + 1 = 1$ et $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ donc, par limite d'une somme : $\lim_{x\to 0^+} f(x) = +\infty$.
- On a : u'(x) = 1 et $v'(x) = -\frac{1}{x^2}$ donc, par dérivée d'une somme : $f'(x) = 1 \frac{1}{x^2}$.

Pour tout réel $x \in]0$; $+\infty[$, $f'(x) = \frac{x^2 - 1}{x^2} = \frac{(x+1)(x-1)}{x^2}$.

Le tableau de variations de la fonction f est donné par :

x	0		1		$+\infty$
x-1		_	0	+	
x+1		+		+	
$\frac{x^2}{f'(x)}$		+		+	
f'(x)		_	0	+	
f(x)	+∞		3		+∞

• La représentation graphique de la fonction *f* est une branche d'hyperbole.



La droite d'équation y = x + 1 est une *asymptote oblique* en $+\infty$ à la courbe de la fonction f. L'axe des ordonnées est une asymptote verticale à la courbe de la fonction f.

CHAPITRE

VARIABLES ALÉATOIRES

CONNAISSANCES ET CAPACITÉS

- Espérance d'une variable aléatoire discrète.
- Loi binomiale B(n,p); espérance.
- Coefficients binomiaux; triangle de Pascal.
- Calculer l'espérance d'une variable aléatoire discrète dans des cas simples et l'interpréter.
- Calculer des coefficients binomiaux à l'aide du triangle de Pascal pour n ≤ 10.
- Reconnaître une situation relevant de la loi binomiale et en identifier le couple de paramètres.
- Lorsque la variable aléatoire *X* suit une loi binomiale :
 - interpréter l'événement $\{X = k\}$ sur un arbre de probabilité;
 - calculer les probabilités des événements $\{X=0\}$, $\{X=1\}$, $\{X=n\}$, $\{X=n-1\}$ et de ceux qui s'en déduisent par réunion;
 - calculer la probabilité de l'événement $\{X=k\}$ à l'aide des coefficients binomiaux.

§ 1. Variables aléatoires

a. Variable aléatoire discrète

DÉFINITION

Soit Ω l'ensemble des issues d'une expérience aléatoire.

- Une $\emph{variable aléatoire}$ sur Ω est une fonction X qui associe à chaque issue de Ω un réel.
- On note $X(\Omega) = \{x_1; ...; x_n\}$ l'ensemble des valeurs prises par X.

EXEMPLE

· Jeu de cartes

Un joueur tire une carte au hasard d'un jeu de 32 cartes et perd $5 \in$ lorsque la carte tirée est un nombre pair, perd $4 \in$ lorsque la carte tirée est un nombre impair, et gagne $6 \in$ lorsque la carte tirée est une figure.

L'ensemble Ω est l'ensemble des 32 cartes.

Le gain du joueur est une variable aléatoire X sur Ω .

L'ensemble des gains est $X(\Omega) = \{-5; -4; +6\}$.

b. Loi de probabilité d'une variable aléatoire

DÉFINITION

Avec les notations précédentes :

- L'événement $\{X = x_i\}$ est l'ensemble des issues de Ω auxquelles on associe le réel x_i .
- La *probabilité* $p(X = x_i)$ est la probabilité de l'événement $\{X = x_i\}$, notée p_i . La *loi de probabilité* de la variable X est l'ensemble des couples $(x_i; p_i)$:

Valeur x_i	x_1	•••	x_n
Probabilité $p(X = x_i)$	p_1		p_n

EXEMPLE

· Jeu de cartes

Il y a 8 nombres pairs: 8 et 10 dans chaque couleur.

Il y a 12 nombres impairs: 7, 9 et As dans chaque couleur.

Il y a 12 figures dans un jeu de 32 cartes : Valet, Dame et Roi dans chaque couleur Pique, Cœur, Carreau et Trèfle.

La loi de probabilité sur l'ensemble des gains $X(\Omega) = \{-5; -4; +6\}$ est donnée par :

Valeur x_i	-5	-4	+6
Probabilité $p(X = x_i)$	$\frac{8}{32}$	$\frac{12}{32}$	$\frac{12}{32}$

c. Espérance d'une variable aléatoire discrète

DÉFINITION

Avec les notations précédentes, l'espérance mathématique de la variable X, notée E(X), est définie par:

$$E(X) = p_1 x_1 + \dots + p_n x_n$$

EXEMPLE

On a:
$$E(X) = p_1 x_1 + p_2 x_2 + p_3 x_3 = \frac{8}{32} \times (-5) + \frac{12}{32} \times (-4) + \frac{12}{32} \times 6 = -0.5.$$

Lorsqu'on joue un très grand nombre de fois, on peut perdre en moyenne 0,50 €.

§ 2. Loi binomiale

a. Schéma de Bernoulli

DÉFINITION

Un *schéma de Bernoulli* de paramètres n et p est une expérience aléatoire qui consiste à répéter n fois et de manière indépendante une même épreuve de Bernoulli de paramètre p d'issues contraires S et E de probabilités p et 1-p.

Les issues sont donc des « mots » de n lettres, chaque lettre étant la lettre S ou la lettre E.

EXEMPLE

• Urne

Une urne contient 40 boules blanches et 60 boules noires.

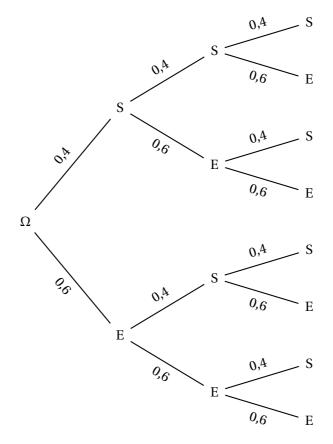
On tire successivement et avec remise trois boules de l'urne et on note leur couleur.

Soit S l'événement : « la boule tirée est blanche » lors d'un tirage.

On réalise une épreuve de Bernoulli de paramètre p = 0.4.

Le tirage successif et avec remise de trois boules de l'urne consiste à répéter 3 fois et de manière indépendante cette même épreuve de Bernoulli.

On réalise une schéma de Bernoulli de paramètres n=3 et p=0,4.



Il y a huit issues : $\Omega = \{SSS ; SSE ; SES ; SEE ; ESS ; ESE ; EES ; EEE \}$.

b. Loi binomiale

DÉFINITION

On considère un schéma de Bernoulli de paramètres n et p.

La *loi binomiale* de paramètres n et p, notée $\mathcal{B}(n; p)$, est la loi de probabilité de la variable aléatoire X à valeurs dans $\{0; 1; \dots; n\}$ et comptant le nombre de succès obtenus dans le schéma de Bernoulli.

EXEMPLE

• La loi binomiale $\mathcal{B}(3; 0,4)$.

Valeur <i>k</i>	0	1	2	3
Probabilité $p(X = k)$	0,216	0,432	0,288	0,064

On a : $p(X = 0) = p(EEE) = 1 \times 0.4^{0} \times 0.6^{3} = 0.216$.

On a: $p(X = 1) = p(SEE) + p(ESE) + p(EES) = 3 \times 0.4^{1} \times 0.6^{2} = 0.432$.

On a: $p(X = 2) = p(SSE) + p(SES) + p(ESS) = 3 \times 0.4^2 \times 0.6^1 = 0.288$.

On a: $p(X = 3) = p(SSS) = 1 \times 0.4^3 \times 0.6^0 = 0.064$.

PROPRIÉTÉ

L'*espérance mathématique* d'une variable aléatoire X suivant la loi binomiale $\mathcal{B}(n; p)$, notée E(X), est donnée par :

$$E(X) = n \times p$$

EXEMPLE

• La loi binomiale $\mathcal{B}(75; 0,4)$.

On a :
$$E(X) = n \times p = 75 \times 0.4 = 30$$
.

Si on tire successivement et avec remise 75 boules d'une urne contenant 40 boules blanches et 60 boules noires, on peut espérer tirer 30 boules blanches.

c. Coefficients binomiaux

NOTATION

On considère un schéma de Bernoulli de paramètres n et p et un entier naturel $k \le n$.

On note $\binom{n}{k}$ et on lit « k parmi n », le nombre d'issues réalisant k succès lors des n répétitions.

EXEMPLE

• Schéma de Bernoulli de paramètres n = 3 et p = 0,4.

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} = 1 \qquad \qquad \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3 \qquad \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \qquad \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$

REMARQUE

Pour tout entier naturel n, on a:

$$\binom{n}{0} = 1 \qquad \qquad \binom{n}{1} = n \qquad \qquad \binom{n}{n-1} = n \qquad \qquad \binom{n}{n} = 1$$

PROPRIÉTÉ

• Pour tous entiers naturels n et k tels que $0 \le k \le n$, on a :

$$\binom{n}{k} = \binom{n}{n-k}$$

• Pour tous entiers naturels n et k tels que $1 \le k \le n-1$, on a :

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

d. Triangle de Pascal

MÉTHODE

Les coefficients binomiaux se calculent ligne par ligne à l'aide du triangle de Pascal:

n k	0	1	2	3	4	5	•••
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
•••	•••	•••	•••		•••	•••	•••

- On convient que : $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$.
- Sur la première colonne : $\binom{n}{0} = 1$ et sur la diagonale : $\binom{n}{n} = 1$.
- Au cœur: $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Propriété

Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(n\,;\,p)$. Pour tout entier naturel k tel que $0 \le k \le n$:

$$p(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}$$

ANNEXE

OPTIMISATION LINÉAIRE

CONNAISSANCES ET CAPACITÉS

- Modéliser une situation réelle à l'aide d'un système d'inéquations linéaires à deux inconnues à coefficients numériques.
- Représenter graphiquement le polygone convexe lié aux contraintes.
- Résoudre graphiquement un problème d'optimisation linéaire.

PROBLÈME

Un restaurateur veut acheter des tables et des chaises pour son restaurant.

- Il veut au moins 15 tables et 70 chaises.
- Un fournisseur A lui propose un lot de 1 table et 6 chaises pour 75 €.
- Un fournisseur B lui propose un lot de 1 table et 4 chaises pour 60 €.

Déterminer le nombre de lots A et le nombre de lots B à acheter pour que le coût soit minimum. Quel est ce coût minimum?

§ 1. Système des contraintes

REMARQUE

On note x et y les nombres respectifs de lots A et de lots B achetés par le restaurateur.

Comme le restaurateur veut au moins 15 tables, on a par équivalences successives :

$$x + y \ge 15 \Leftrightarrow y \ge -x + 15$$

Comme le restaurateur veut au moins 70 chaises, on a par équivalences successives :

$$6x + 4y \ge 70 \Leftrightarrow 4y \ge -6x + 70 \Leftrightarrow y \ge -1.5x + 17.5$$

Le couple d'entiers (x; y) vérifie donc le système d'inéquations :

$$(S): \left\{ \begin{array}{lll} y & \geqslant & -x+15 & (I_1) \\ y & \geqslant & -1,5x+17,5 & (I_2) \\ x & \geqslant & 0 & (I_3) \\ y & \geqslant & 0 & (I_4) \end{array} \right.$$

DÉFINITION

Le système (S) est appelé le système des contraintes.

§ 2. Domaine des contraintes

DÉFINITION

Dans un repère, l'ensemble \mathcal{D} des points M dont les coordonnées (x; y) vérifient le système (S) est appelé le *domaine des contraintes*.

SOLUTION

Pour déterminer le domaine des contraintes \mathcal{D} :

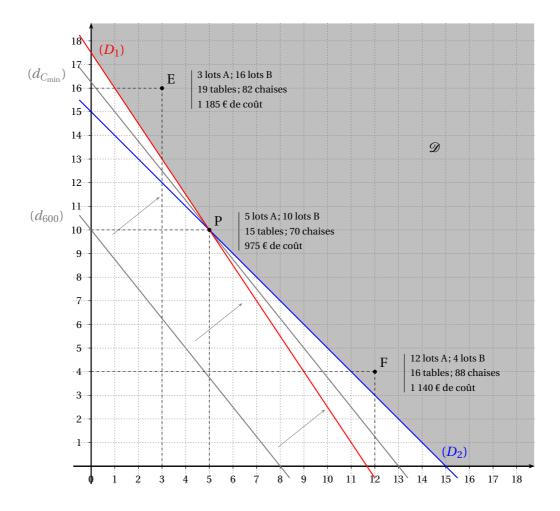
On trace les droites (D_1) et (D_2) d'équations respectives y = -x + 15 et y = -1.5x + 17.5.

D'après l'inéquation (I_1) , les couples solutions du système (S) sont parmi les coordonnées des points situés « au-dessus » de la droite (D_1) .

D'après l'inéquation (I_2) , les couples solutions du système (S) sont parmi les coordonnées des points situés « au-dessus » de la droite (D_2) .

D'après les inéquations (I_3) et (I_4), les couples solutions du système (S) sont parmi les coordonnées des points à coordonnées positives.

Par conséquent, le domaine des contraintes D est la « zone grisée ».



§ 3. Optimisation linéaire

REMARQUE

Soit *C* le coût d'achat de *x* lots A et de *y* lots B.

Par équivalences successives, on a :

$$C = 75x + 60y \Leftrightarrow 60y = -75x + C \Leftrightarrow y = -\frac{5}{4}x + \frac{C}{60}$$

Pour un coût donné C, l'équation $y = -\frac{5}{4}x + \frac{C}{60}$ est l'équation réduite d'une droite (d_C) de coefficient directeur $-\frac{5}{4}$ et d'ordonnée à l'origine $\frac{C}{60}$, proportionnelle au coût C.

MÉTHODE

Pour trouver le coût minimum, on cherche parmi toutes les droites (d_C) celle qui passe par un point P à coordonnées entières du domaine des contraintes et qui minimise l'ordonnée à l'origine.

Le nombre de lots A qui minimise le coût est alors donné par x_P .

Le nombre de lots B qui minimise le coût est alors donné par y_P .

Le coût minimum C_{\min} est alors donné par $C_{\min} = 75x_P + 60y_P$.

Comme les droite (d_C) ont le même coefficient directeur, elles sont parallèles entre elles.

Pour trouver le point P, on trace une des droites (d_C) , n'importe laquelle, et on obtient la droite $(d_{C_{\min}})$ par parallélisme.

SOLUTION

Graphiquement, on obtient: $(x_P; y_P) = (5; 10)$.

Le restaurateur doit acheter 5 lots A et 10 lots B pour minimiser le coût.

Il aura acheté 15 tables et 70 chaises.

Le coût est de 975 €.

ANNEXE

GRAPHES

CONNAISSANCES ET CAPACITÉS

- Modéliser une situation ou une succession de tâches par un graphe et l'exploiter.
- Déterminer un plus court chemin.

PROBLÈME

Le tableau suivant décrit les différentes tâches pour la préparation d'une tarte à la rhubarbe meringuée.

Certaines tâches peuvent être réalisées simultanément par plusieurs personnes.

	Tâche	Durée (min)	Antécédents immédiats
A	Éplucher et découper la rhubarbe en dés	8	
В	Mettre la rhubarbe dans un plat et verser le sucre	2	A
C	Préchauffer le four à 180°C	8	
D	Préparer la pâte	8	
E	Laisser reposer la pâte	15	D
F	Étaler la pâte dans le moule beurré et sau- poudrer de farine	4	Е
G	Égoutter la rhubarbe et la verser sur la pâte	5	B et F
Н	Enfourner	20	C et G
I	Préparer la garniture	4	
J	Sortir du four et ajouter la garniture sur la tarte	1	I et H
K	Enfourner à nouveau	10	J
L	Monter les blancs en neige	5	I
M	Incorporer aux blancs le sucre	2	L
N	Sortir du four et étaler le mélange sur la tarte	2	M et K
0	Mettre sous le grill	5	N
P	Sortir du four et laisser refroidir	30	0

Quel est la durée minimum pour réaliser cette recette?

Annexe B. Graphes 33

§ 1. Graphe d'ordonnancement des tâches

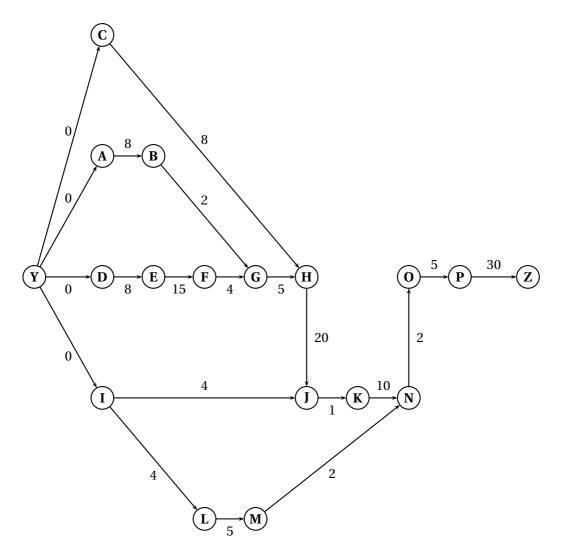
REMARQUE

Le schéma suivant respecte l'ordonnancement des tâches de la recette.

Au niveau de chaque flèche est indiquée la durée nécessaire à l'exécution de la tâche d'origine.

La lettre Y indique le début de la réalisation de la recette.

La lettre Z indique la fin de la réalisation de la recette.



DÉFINITION

- Le schéma précédent est appelé un graphe.
- L'ordonnancement des tâches en fait un graphe orienté.
- Les durées entre deux tâches ordonnées en font un graphe pondéré.
- Les « bulles » sont appelées les sommets du graphe.
- Les « flèches » reliant deux sommets sont appelées les arêtes du graphe.
- Deux sommets sont adjacents lorsqu'ils sont reliés par une arête.

Annexe B. Graphes 34

§ 2. Optimisation de la durée de la recette

MÉTHODE

Comme certaines tâches peuvent être réalisées simultanément par plusieurs personnes :

- On calcule la somme des durées de chaque chemin du graphe de Y à Z.
- La durée minimum de réalisation de la recette est la plus grande somme.

SOLUTION

Il y a 5 chemins possibles de Y à Z:

Pour chacun des 5 chemins possibles, la somme est égale à :

$$8+20+1+10+2+5+30=76$$

$$8+2+5+20+1+10+2+5+30=83$$

$$8+15+4+5+20+1+10+2+5+30=100$$

$$4+1+10+2+5+30=52$$

$$4+5+2+2+5+30=48$$

La durée minimum de réalisation de la recette est 100 minutes soit 1 h 40 min.

ANNEXE B. GRAPHES 35

ANNEXE

MÉTHODE DE MONTE-CARLO

CONNAISSANCES ET CAPACITÉS

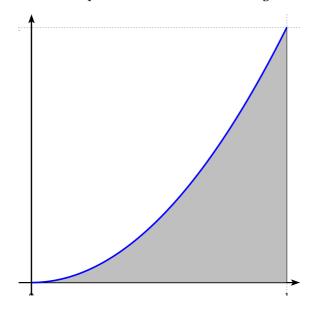
- Simuler des contenus et des capacités figurant au programme.
- Découvrir la méthode de Monte-Carlo.

PROBLÈME

On considère la courbe $\mathscr C$ de la fonction carré restreinte à l'intervalle [0;1].

On veut estimer l'aire $\mathcal A$ sous la courbe $\mathcal C$ par la simulation d'un nuage de points.

On remarquera que l'aire du carré qui contient la courbe $\mathscr C$ est égale à 1.



§ 1. Nuage de points aléatoires

MÉTHODE

Comme l'aire du carré qui contient la courbe $\mathscr C$ est égale à 1, l'aire $\mathscr A$ sous la courbe $\mathscr C$ est égale à la probabilité p de choisir un point sous la courbe $\mathscr C$.

On choisit au hasard *n* points de coordonnées *x* et *y* comprises entre 0 et 1.

On calcule la fréquence f des points situés sous la courbe \mathscr{C} .

La fréquence f donne une valeur approchée de la probabilité p. Elle donne également une valeur approchée de l'aire $\mathscr A$ sous la courbe $\mathscr C$.

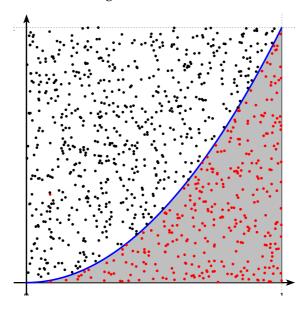
SOLUTION

Sur la figure ci-dessous où 1 000 points ont été choisis au hasard, 335 d'entre eux sont sous la courbe \mathscr{C} .

Lycée Jean DROUANT

On a:
$$f = \frac{335}{1000} = 0.335$$
.

L'aire ${\mathcal A}$ sous la courbe ${\mathcal C}$ est environ égale à 0,335.



§ 2. Script Python

MÉTHODE

Pour obtenir un nombre n conséquent de points et une meilleure approximation de l'aire $\mathcal A$ sous la courbe $\mathcal C$, on utilise un script Python.

SOLUTION

Le script Python ci-dessous peut être réalisé sur la page SageMath de MATHS à DROUANT.

```
def monte_carlo(n):
    s = 0
    for k in range(n):
        x = random()
        y = random()
        if y <= x**2:
            s += 1
    return s/n</pre>
```

On obtient par exemple :

Nombre <i>n</i> de points	1 000	10 000	100 000	1 000 000
monte_carlo(n)	0,329	0,332 0	0,331 56	0,333 024

L'aire \mathscr{A} sous la courbe \mathscr{C} semble être égale à $\frac{1}{3}$.