FEUILLE N°9

Université Paris 1

VARIABLES ALÉATOIRES ET LOI BINOMIALE

EXERCICE 1

On choisit au hasard une carte dans un jeu de 32 cartes.

Si l'on obtient un 7, un 8, un 9 ou un 10, on perd 3 euros. Si l'on obtient un Valet, une Dame ou un Roi, on gagne 2 euros. Si l'on obtient un As, on gagne 5 euros.

Soit *X* la variable aléatoire qui, à chaque lancer, associe le gain du joueur.

Donner l'ensemble des valeurs prises par X.

EXERCICE 2

Une urne contient 5 boules jaunes, 3 boules rouges et 4 boules vertes. On tire simultanément trois boules de l'urne. On appelle X la variable aléatoire qui, à chaque tirage de trois boules, associe le nombre de boules rouges obtenues.

- 1. Quelles sont les valeurs prises par *X*?
- **2**. Décrire l'événement $\{X = 2\}$.
- **3**. Décrire l'événement $\{X = 3\}$.

EXERCICE 3

On lance un dé cubique équilibré numéroté de 1 à 6. On gagne 5 euros si l'on obtient la face numérotée « 3 » et on gagne 1 euro dans les autres cas.

Soit X la variable aléatoire qui, à chaque lancer, associe le gain du joueur.

- **1**. Donner p(X = 1).
- **2**. Donner p(X = 5).

EXERCICE 4

On note X la variable aléatoire qui, à chaque jour, associe le nombre de voitures neuves vendues par un concessionnaire.

Sa loi de probabilité est donnée par le tableau suivant :

Valeur x_i	0	1	2	3
Probabilité $p(X = x_i)$	0,45	0,3	0,15	p

- **1**. Donner la probabilité p(X = 1).
- **2**. Calculer $p(X \le 1)$.
- **3**. Calculer le réel *p*.
- **4**. Calculer l'espérance mathématique E(X) et interpréter le résultat.

EXERCICE 5

Un sac contient un jeton marqué « 2 » et un jeton marqué « 3 ».

On tire un jeton, on note son numéro, on le remet dans le sac, puis on effectue de même un second tirage.

On définit alors la variable aléatoire X qui, à chaque partie, associe le produit des deux numéros obtenus.

- 1. Déterminer l'ensemble Ω des issues possibles de cette expérience, puis l'ensemble des valeurs prises par X.
- **2**. Décrire l'événement $\{X = 9\}$ et calculer sa probabilité.
- **3**. Décrire l'événement $\{X < 8\}$ et calculer sa probabilité.

EXERCICE 6

1. La loi de probabilité d'une variable aléatoire *X* est donnée par le tableau suivant :

Valeur x_i	2	5
Probabilité $p(X = x_i)$	0,4	0,6

Calculer l'espérance mathématique E(X) et l'écart-type $\sigma(X)$.

2. Une variable aléatoire X suit une loi de Bernoulli de paramètre p = 0,4. Donner son espérance mathématique et son écart-type.

EXERCICE 7

Un adolescent télécharge au plus cinq applications payantes sur son smartphone par mois. On note N la variable aléatoire qui, à un mois donné, associe le nombre d'applications achetées par l'adolescent.

La loi de N est donnée par le tableau ci-dessous :

Valeur <i>k</i>	0	1	2	3	4	5
Probabilité $p(N = k)$	0,13	0,2	p	0,07	0,3	0,1

- 1. Calculer la probabilité manquante p.
- 2. Calculer la probabilité qu'il achète au moins trois applications au cours du mois.
- 3. Calculer la probabilité qu'il achète au plus quatre applications au cours du mois.

EXERCICE 8

On appelle X la variable aléatoire qui, à chaque jour, associe le nombre de connexions d'un étudiant à l'espace pédagogique interactif de son université (EPI).

Sa loi de probabilité est donnée par le tableau suivant :

Valeur x_i	0	1	2	3
Probabilité $p(X = x_i)$	0,1	0,2	0,5	0,2

- 1. Calculer l'espérance E(X).
- 2. Interpréter le résultat.

EXERCICE 9

On lance une pièce de monnaie truquée de telle manière que la probabilité de sortie de la face « PILE » est 0,4.

Le joueur gagne 3 euros si la face visible est « PILE », sinon il perd 2 euros.

On note G la variable aléatoire qui, à chaque lancer, associe le gain du joueur.

- 1. Etablir la loi de probabilité de *G*.
- **2**. Calculer l'espérance de *G*.
- 3. Le jeu est-il équitable? Justifier.

EXERCICE 10

Des études statistiques ont montré qu'à la naissance, la probabilité d'avoir un garçon est égale à 0,51. On rencontre au hasard une famille de trois enfants, dont les naissances sont supposées indépendantes.

On appelle X la variable aléatoire égale au nombre de garçons.

- 1. Justifier que *X* suit une loi binomiale. Préciser les paramètres.
- 2. Calculer la probabilité que cette famille ait exactement un garçon.
- 3. Calculer la probabilité que cette famille ait au moins un garçon.
- 4. On rencontre ensuite au hasard et de manière indépendante 10 familles de trois enfants.

On appelle *Y* la variable aléatoire égale au nombre de familles ayant au moins un garçon.

- **a.** Justifier que Y suit une loi binomiale dont on déterminera les paramètres.
- b. Calculer la probabilité que neuf familles exactement sur les dix aient au moins un garçon.

EXERCICE 11

Un étudiant se rend à vélo à l'université distante de 3 km de son domicile à une vitesse supposée constante de 15 km/h.

Sur le parcours, il rencontre 6 feux bicolores non synchronisés.

Pour chaque feu bicolore, la probabilité qu'il soit au vert est égale à $\frac{2}{3}$ et celle qu'il soit au rouge est égale à $\frac{1}{3}$.

Un feu rouge lui fait perdre une minute et demie.

On appelle X la variable aléatoire égale au nombre de feux verts rencontrés par l'étudiant sur son parcours.

On appelle T la variable aléatoire donnant le temps en minutes mis par l'étudiant pour se rendre à l'université.

- 1. Déterminer la loi de probabilité de *X*.
- **2**. **a.** Exprimer T en fonction de X.
 - **b.** Déterminer E(T) et interpréter le résultat.
- 3. L'étudiant part 17 minutes avant le début d'un cours.
 - a. Peut-il espérer être à l'heure?
 - **b.** Calculer la probabilité pour qu'il arrive en retard.

EXERCICE 12

Un lièvre et une tortue lancent un dé cubique parfaitement équilibré numéroté de 1 à 6.

- Si le dé tombe sur 6, le lièvre gagne et la partie s'arrête;
- Si le dé tombe sur un autre numéro, la tortue avance d'une case. La tortue gagne et la partie s'arrête si elle parvient à avancer de *n* cases.

On note $p_n(T)$ la probabilité que la tortue gagne et $p_n(L)$ la probabilité que le lièvre gagne.

Partie A. Étude du cas n = 4

- 1. **a.** Montrer que $p_4(T) \simeq 0.48$.
 - **b.** A quel animal le jeu est-il favorable?
- 2. Soit *X* la variable aléatoire donnant le nombre de lancers nécessaires pour obtenir un vainqueur.
 - **a.** Déterminer la loi de probabilité de X.
 - b. Combien de lancers faut-il en moyenne pour obtenir un vainqueur?
- 3. Les deux animaux jouent 10 parties indépendantes.
 - a. Quelle est la probabilité que la tortue gagne exactement 5 fois?
 - b. Quelle est la probabilité que la tortue gagne au moins 2 fois?

Partie B. Cas général

- **1. a.** Calculer $p_n(T)$ en fonction de n.
 - **b.** Déterminer pour quelles valeurs de n le jeu est favorable à la tortue.
- **2. a.** Calculer l'espérance du nombre de parties remportées par la tortue dans une série de 10 parties jouées.
 - **b.** Pour quelles valeurs de n la tortue peut-elle espérer gagner au moins 9 parties sur 10?

EXERCICE 13

Combien de fois faut-il jeter une pièce de monnaie parfaitement équilibrée pour obtenir au moins une fois la face PILE avec une probabilité supérieure à 0,99?