Lycée Jean DROUANT École Hôtelière de PARIS 20, rue Médéric 75 017 PARIS

Cours de Mathématiques Première STHR

Emmanuel DUPUY Emmanuel-R.Dupuy@ac-paris.fr

> Paris Année 2024-2025

TABLE DES MATIÈRES

CHAPIT	RE 1	. Suites numériques	
§ 1.	S	uites numériques	5
	a.	Suite numérique	5
	b.	Représentation graphique	6
	c.	Sens de variations	6
§ 2.	N	Modes de génération d'une suite	7
	a.	Suite définie par une relation de récurrence	7
	b.	Suite définie par une relation fonctionnelle	7
§ 3.	S	uites arithmétiques	8
	a.	Suite arithmétique	8
	b.	Représentation graphique	8
	c.	Sens de variations	9
§ 4.	S	uites géométriques	9
	a.	Suite géométrique	
	b.	Représentation graphique	
	c.	Sens de variations	10
CHAPIT	RE 2	. Statistiques et probabilités	
§ 1.			11
91.	a.	tatistiques	
	a. b.	Fréquence marginale	
	о. С.	Fréquence conditionnelle	
§ 2.		Probabilités conditionnelles	
y 2.	•	Tobublices conditionnelles	13
CHAPIT	RE 3	. Fonctions	
§ 1.	F	Conctions comme modèles d'évolutions continues	15
	a.	Fonction	15
	b.	Représentation graphique	15
	c.	Taux de variation	16
	d.	Résolution graphique d'une équation du type $f(x) = k$	16
	e.	Résolution graphique d'une inéquation du type $f(x) < k$	17
§ 2.	F	Conctions polynômes de degré 2	
	a.	Représentations graphiques	
	b.	Racines du polynôme du second degré	
	c.	Signe du polynôme du second degré	
§ 3.	F	Conctions polynômes de degré 3	
	a.	Représentations graphiques	
	b.	1	18
	c.	Racines du polynôme du troisième degré	
	d.	Signe du polynôme du troisième degré	19

CHAPITRE	4. Variables aléatoires	
§ 1.	Épreuves indépendantes	20
a.	Épreuves indépendantes	20
b.	Arbre de probabilités	21
c.	Épreuve de Bernoulli	22
d.	Répétition d'épreuves de Bernoulli identiques et indépendantes	22
§ 2.	Variables aléatoires	23
a.	Variable aléatoire discrète	23
b.	Loi de probabilité d'une variable aléatoire	23
c.	Espérance mathématique d'une variable aléatoire	24
d.	Loi de Bernoulli	24
CHAPITRE	5. Dérivation	
§ 1.	Tangente à une courbe et nombre dérivé	25
a.	Tangente à une courbe	25
b.	Nombre dérivé	26
c.	Équation de la tangente à une courbe	26
§ 2.	Fonction dérivée	27
a.	Fonction dérivée	27
b.	Fonction dérivée des fonctions usuelles	27
c.	Fonctions dérivées et opérations	27
§ 3.	Signe de la dérivée et sens de variations	
a.	Dérivée d'une fonction monotone	
b.	Signe de la dérivée et sens de variations	
Annexe A.	Automatismes	
§ 1.	Proportions et pourcentages	29
a.	Calculer une proportion	29
b.	Appliquer une proportion	29
c.	Calculer la proportion d'une proportion	29
§ 2.	Calcul numérique et algébrique	29
a.	Additionner (ou soustraire ou comparer) deux fractions	
b.	Multiplier (ou diviser) deux fractions	29
c.	Effectuer des opérations sur les puissances	
d.	Passer d'une écriture d'un nombre à une autre	
e.	Estimer un ordre de grandeur	30
f.	Effectuer des conversions d'unités	
g.	Isoler une variable dans une égalité ou une inégalité	
h.		
i.	Réduire une expression	
j.	Développer une expression	
k.	Factoriser une expression	
§ 3.	Fonctions et représentations	
a.	Déterminer graphiquement des images et des antécédents	
b.	Résoudre graphiquement une équation ou une inéquation	
c.	Déterminer graphiquement le signe d'une fonction	
d.	Déterminer graphiquement le tableau de variations d'une fonction	
e.	Exploiter une équation de courbe	
f.	Tracer une droite donnée par son équation réduite	
1.	made and arone domine par our equation reduite	50

٤	g.	Tracer une droite donnée par un point et son coefficient directeur	33
ŀ	h.	Lire graphiquement l'équation réduite d'une droite	34
i	i. :	Déterminer l'équation réduite d'une droite à partir de deux de ses points	34
§ 4.	Év	volutions et variations	34
á	a.	Passer d'une formulation additive à une formulation multiplicative	34
ŀ	b.	Appliquer un taux d'évolution pour calculer une valeur finale ou initiale	35
(c.	Calculer un taux d'évolution	35
(d.	Interpréter ou calculer un indice	35
•	e.	Calculer le taux d'évolution équivalent à plusieurs évolutions successives	35
f	f. ·	Calculer un taux d'évolution réciproque	35
§ 5.	Ca	alcul numérique et algébrique	35
a	a.	Résoudre une équation ou une inéquation du premier degré	35
ł	b.	Résoudre une équation du type $x^2 = a$	35
(c.	Déterminer le signe d'une expression du premier degré	36
(d.	Déterminer le signe d'une expression factorisée du second degré	36
§ 6.	Re	eprésentations graphiques de données chiffrées	36
a	a.	Lire un graphique	36
ł	b.	Lire un histogramme	36
(c.	Lire un diagramme en barres ou circulaire	36
(d.	Lire un diagramme en boîte	36
•	е.	Repérer l'origine du repère, les unités de graduations ou les échelles	36
f	f .	Passer du graphique aux données et vice-versa	36

CHAPITRE

SUITES NUMÉRIQUES

CONNAISSANCES ET CAPACITÉS

- Différents modes de génération d'une suite numérique.
- · Sens de variations.
- Représentation graphique : nuage de points (n; u(n)).

Suites arithmétiques et géométriques :

- Relation de récurrence.
- · Sens de variations.
- Représentation graphique.
- Modéliser une situation à l'aide d'une suite.
- Reconnaître si une situation relève d'un modèle discret de croissance linéaire ou exponentielle.
- Calculer un terme de rang donné d'une suite définie par une relation fonctionnelle ou une relation de récurrence.
- Réaliser et exploiter la représentation graphique d'une suite.
- Conjecturer, à partir de sa représentation graphique, la nature arithmétique ou géométrique d'une suite.
- Démontrer qu'une suite est arithmétique ou géométrique.
- Déterminer le sens de variations d'une suite arithmétique ou géométrique à l'aide de la raison.

§ 1. Suites numériques

a. Suite numérique

EXEMPLE

Burgers

Le tableau suivant présente l'évolution de la consommation de burgers, en milliard, par les français entre 2012 et 2015:

Année	2012	2013	2014	2015
Rang de l'année	0	1	2	3
Nombre de burgers consommés	0,92	0,97	1,07	1,19

On note u_n , et on lit « u indice n », le nombre de burgers consommés l'année 2012 + n.

Ainsi: $u_0 = 0.92$; $u_1 = 0.97$; $u_2 = 1.07$; $u_3 = 1.19$.

DÉFINITION

• Une *suite numérique* (u_n) est une liste numérotée de nombres réels. On note :

$$(u_n): \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

- L'entier naturel n s'appelle le rang.
- Le nombre réel u_n s'appelle le *terme* de rang n.

b. Représentation graphique

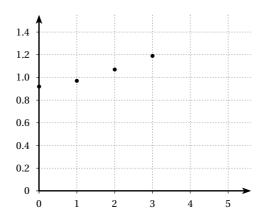
MÉTHODE

On peut représenter une suite (u_n) de deux manières :

- Sur une droite graduée en plaçant les points d'abscisses u_0 ; u_1 ; u_2 ; u_3 ; ...
- Dans un repère en plaçant les points de coordonnées $(0; u_0)$; $(1; u_1)$; $(2; u_2)$; $(3; u_3)$; ...

EXEMPLE

• Burgers



c. Sens de variations

DÉFINITION

• Une suite (u_n) est une *suite croissante* lorsque, pour tout $n \in \mathbb{N}$:

$$u_n < u_{n+1}$$

Autrement dit, chaque terme est inférieur au terme suivant.

• Une suite (u_n) est une *suite décroissante* lorsque, pour tout $n \in \mathbb{N}$:

$$u_n > u_{n+1}$$

Autrement dit, chaque terme est supérieur au terme suivant.

EXEMPLE

• Burgers

On a :
$$u_0 < u_1 < u_2 < u_3$$
.

La consommation de burgers en France entre 2012 et 2015 forme une suite croissante.

Lycée Jean DROUANT

§ 2. Modes de génération d'une suite

a. Suite définie par une relation de récurrence

DÉFINITION

Une suite (u_n) est définie par une *relation de récurrence* lorsqu'elle est définie par son premier terme u_0 et par une relation unique qui permet de calculer, pour tout $n \in \mathbb{N}$, le terme u_{n+1} en fonction du terme précédent u_n .

Autrement dit, il existe une fonction f définie sur un intervalle \mathbb{I} contenant tous les termes u_n telle que, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = f(u_n)$$

EXEMPLE

· Nombres impairs

La suite des nombres impairs est définie par son premier terme $u_0 = 1$ et par la relation de récurrence, pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + 2$.

Par exemple, on a:

$$u_1 = u_0 + 2 = 1 + 2 = 3$$
.

$$u_2 = u_1 + 2 = 3 + 2 = 5.$$

b. Suite définie par une relation fonctionnelle

DÉFINITION

Une suite (u_n) est définie par une *relation fonctionnelle* lorsqu'il existe une fonction f définie sur l'intervalle $[0; +\infty[$ telle que, pour tout $n \in \mathbb{N}$:

$$u_n = f(n)$$

EXEMPLE

Nombres impairs

La suite des nombres impairs est définie par la fonction f définie sur l'intervalle $[0; +\infty[$ par l'expression f(x) = 2x + 1.

Pour tout $n \in \mathbb{N}$: $u_n = 2n + 1$.

Par exemple, on a:

$$u_{1\ 000} = 2 \times 1\ 000 + 1 = 2\ 001.$$

$$u_{2.018} = 2 \times 2.018 + 1 = 4.037.$$

§ 3. Suites arithmétiques

a. Suite arithmétique

DÉFINITION

Soit r un réel.

Une suite (u_n) est une *suite arithmétique* de *raison r* lorsque, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n + r$$

EXEMPLE

· Nombres impairs

Pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + 2$.

La suite des nombres impairs est une suite arithmétique de raison 2.

CONTRE-EXEMPLE

• Burgers

On a : $u_1 - u_0 = 0.05$ mais $u_2 - u_1 = 0.10$.

La consommation de burgers en France ne forme pas une suite arithmétique.

b. Représentation graphique

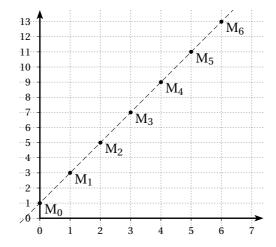
PROPRIÉTÉ

Si (u_n) est une suite arithmétique, alors l'ensemble des points M_n de coordonnées $(n; u_n)$ est situé sur une droite.

EXEMPLE

• Nombres impairs

n	0	1	2	3	4	5	6
u_n	1	3	5	7	9	11	13



c. Sens de variations

Propriété

Soit (u_n) une suite arithmétique de raison r.

- Si r < 0, alors la suite (u_n) est décroissante.
- Si r = 0, alors la suite (u_n) est constante.
- Si r > 0, alors la suite (u_n) est croissante.

§ 4. Suites géométriques

a. Suite géométrique

DÉFINITION

Soit q un réel strictement positif.

Une suite (u_n) est une *suite géométrique* de *raison q* lorsque, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = q \times u_n$$

EXEMPLE

· Puissances de deux

Pour tout $n \in \mathbb{N}$: $u_{n+1} = 2 \times u_n$.

La suite des puissances de deux est une suite géométrique de raison 2.

CONTRE-EXEMPLE

• Burgers

On a:
$$\frac{u_1}{u_0} = \frac{0.97}{0.92} \approx 1,054 \text{ mais } \frac{u_2}{u_1} = \frac{1.07}{0.97} \approx 1,103.$$

La consommation de burgers en France ne forme pas une suite géométrique.

b. Représentation graphique

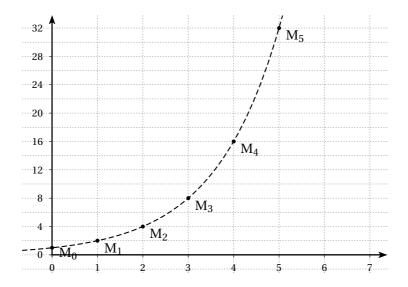
Propriété

Si (u_n) est une suite géométrique, alors l'ensemble des points M_n de coordonnées $(n; u_n)$ est situé sur une *courbe exponentielle*.

EXEMPLE

· Puissances de deux

n	0	1	2	3	4	5
u_n	1	2	4	8	16	32



c. Sens de variations

Propriété

Soit (u_n) une suite géométrique de raison q > 0.

- Si q < 1, alors la suite (u_n) est décroissante.
- Si q = 1, alors la suite (u_n) est constante.
- Si q > 1, alors la suite (u_n) est croissante.

CHAPITRE

2

STATISTIQUES ET PROBABILITÉS

CONNAISSANCES ET CAPACITÉS

- Tableau croisé d'effectifs.
- Fréquence marginale, fréquence conditionnelle.
- Probabilité conditionnelle. Notation $P_A(B)$.
- Calculer des fréquences conditionnelles et des fréquences marginales.
- Compléter un tableau croisé par des raisonnements sur les effectifs ou en utilisant des fréquences conditionnelles.
- Calculer des probabilités conditionnelles lorsque les événements sont présentés sous forme de tableau croisé d'effectifs.

§ 1. Statistiques

a. Tableau croisé

DÉFINITION

• Un *tableau croisé d'effectifs* est l'ensemble des résultats de l'étude de deux *variables* dans une *population*.

EXEMPLE

• Groupe

Age Sexe	Mineurs (B)	Majeurs (B)	Total
Garçons (A)	10	15	25
Filles (A)	6	9	15
Total	16	24	40

La première variable est le sexe. La dernière colonne, dite *colonne marginale*, indique le nombre de garçons (25) et le nombre de filles (15) dans le groupe.

La deuxième variable est l'âge. La dernière ligne, dite *ligne marginale*, indique le nombre de mineurs (16) et le nombre de majeurs (24) dans le groupe.

Le croisement de la colonne marginale et de la ligne marginale indique le nombre d'individus (40) dans le groupe.

Les autres cases indiquent le nombre d'individus selon le sexe et l'âge. Il y a par exemple 10 garçons mineurs dans le groupe.

Fréquence marginale

EXEMPLE

Groupe

La fréquence de garçons dans le groupe est donnée par : $f(A) = \frac{25}{40} = 0,625 = 62,5 \%$. La fréquence de mineurs dans le groupe est donnée par : $f(B) = \frac{16}{40} = 0,40 = 40 \%$.

DÉFINITION

On note Card(E) le nombre d'individus dans la population E et Card(A) le nombre d'individus ayant le caractère A.

	В	B	Total
A			Card(A)
Ā			
Total			Card(E)

La fréquence marginale de A dans E est donnée par la formule :

$$f(A) = \frac{Card(A)}{Card(E)}$$

c. Fréquence conditionnelle

EXEMPLE

Groupe

La fréquence de mineurs parmi les garçons est donnée par : $f_A(B) = \frac{10}{25} = 0,40 = 40 \%$. La fréquence de garçons parmi les mineurs est donnée par : $f_B(A) = \frac{10}{16} = 0,625 = 62,5 \%$.

DÉFINITION

On note $Card(A \cap B)$ le nombre d'individus ayant à la fois les caractères A et B.

	В	$\overline{\mathrm{B}}$	Total
A	$Card(A \cap B)$		Card(A)
Ā			
Total			

La *fréquence conditionnelle* de B dans A est donnée par la formule :

$$f_{A}(B) = \frac{Card(A \cap B)}{Card(A)}$$

§ 2. Probabilités conditionnelles

DÉFINITION

Soient A et B deux événements d'une même expérience aléatoire.

On suppose que $Card(A) \neq 0$.

La *probabilité conditionnelle* de l'événement B sachant que l'événement A est réalisé est donnée par la formule :

$$P_{A}(B) = \frac{Card(A \cap B)}{Card(A)}$$

EXEMPLE

• Groupe

On choisit au hasard un individu du groupe.

On a :
$$P_A(B) = \frac{\text{Card}(A \cap B)}{\text{Card}(A)} = \frac{10}{25} = 0,40 = 40 \%.$$

La probabilité que l'individu soit mineur sachant que l'individu est un garçon est égale à $40\,\%$.

CHAPITRE

3

FONCTIONS

CONNAISSANCES ET CAPACITÉS

Les fonctions comme modèles mathématiques d'évolutions continues :

- Différents modes de représentation d'une fonction : expression littérale, représentation graphique.
- Notations y = f(x) et $x \mapsto f(x)$.
- Taux de variation entre deux valeurs de la variable *x*.

Fonctions polynômes de degré 2 :

- Représentations graphiques des fonctions : $x \mapsto ax^2$, $x \mapsto ax^2 + b$ et $x \mapsto a(x x_1)(x x_2)$.
- Axes de symétrie.
- Racines et signe d'un polynôme de degré 2 sous forme factorisée.

Fonctions polynômes de degré 3 :

- Représentations graphiques des fonctions : $x \mapsto ax^3$ et $x \mapsto ax^3 + b$.
- Racines et signe d'un polynôme de degré 3 sous forme factorisée.
- Équation $x^3 = c$.
- Modéliser la dépendance entre deux grandeurs à l'aide d'une fonction.
- Résoudre graphiquement une équation du type f(x) = k ou une inéquation de la forme f(x) < k ou f(x) > k.
- Interpréter le taux de variation comme pente de la sécante à la courbe passant par deux points distincts.
- Associer une parabole à une expression algébrique de degré 2, pour les fonctions de la forme : $x \mapsto ax^2$, $x \mapsto ax^2 + b$ et $x \mapsto a(x x_1)(x x_2)$.
- Déterminer des éléments caractéristiques (signe, extremum, allure de la courbe, axe de symétrie) de la fonction $x \mapsto a(x x_1)(x x_2)$.
- Vérifier qu'une valeur conjecturée est racine d'un polynôme de degré 2 ou 3.
- Savoir factoriser, dans des cas simples, une expression du second degré connaissant au moins une de ses racines.
- Utiliser la forme factorisée (en produit de facteurs du premier degré) d'un polynôme de degré 2 ou 3 pour trouver ses racines et étudier son signe.
- Résoudre des équations de la forme $x^2 = c$ et $x^3 = c$, avec c positif.

§ 1. Fonctions comme modèles d'évolutions continues

a. Fonction

EXEMPLE

• Engrais

Un industriel produit et vend entre 1 000 L et 6 000 L d'engrais bio chaque mois.

Le bénéfice y en milliers d'euros pour x milliers de litres vendus est donné par l'expression :

$$y = -1.5x^2 + 10.2x - 4$$

Le procédé qui à $x \in [1; 6]$ associe $y \in \mathbb{R}$ définit une fonction f.

DÉFINITION

- Une *fonction* f définie sur un ensemble \mathbb{E} est un procédé qui à tout réel $x \in \mathbb{E}$ associe un unique réel f(x).
- L'expression f(x) s'appelle l'*expression littérale* de f.
- On note : $x \mapsto f(x)$.

b. Représentation graphique

DÉFINITION

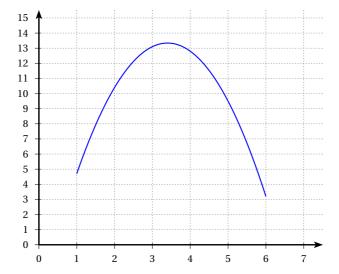
On considère un repère du plan et une fonction f définie sur un ensemble \mathbb{E} .

- L'ensemble des points de coordonnées (x; f(x)), avec $x \in \mathbb{E}$, s'appelle la *représentation graphique* de la fonction f dans le repère.
- Cet ensemble s'appelle aussi la *courbe d'équation* y = f(x).

EXEMPLE

• Engrais

A l'aide d'un logiciel ou d'une calculatrice, on obtient :



c. Taux de variation

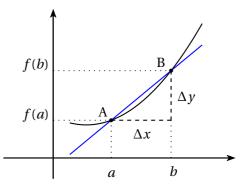
DÉFINITION

On considère une fonction f définie sur un ensemble \mathbb{E} et deux réels a et b de \mathbb{E} tels que a < b.

• Le *taux de variation* de la fonction *f* entre *a* et *b* est défini par :

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

• Le taux de variation de *f* entre *a* et *b* est le coefficient directeur de la droite (AB).



EXEMPLE

Engrais

On a:
$$\frac{\Delta y}{\Delta x} = \frac{f(5) - f(3)}{5 - 3} = \frac{9.5 - 13.1}{2} = -1.8.$$

Le taux de variation entre 3 et 5 milliers de litres est égal à -1,8 milliers d'euros.

Propriété

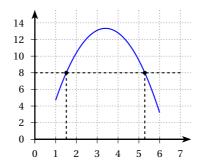
Pour qu'une fonction soit monotone sur un intervalle, il faut et il suffit que son taux de variation entre deux réels quelconques de cet intervalle garde un signe constant.

d. Résolution graphique d'une équation du type f(x) = k

EXEMPLE

• Engrais

Graphiquement les solutions de l'équation f(x) = 8 sont les réels environ égaux à 1,5 et 5,3, abscisses des points de la courbe d'ordonnée égale à 8.



Propriété

On considère une fonction f et un réel k. On note \mathscr{C}_f la courbe de f dans un repère.

Les solutions de l'équation f(x) = k sont les abscisses des points de la courbe \mathcal{C}_f d'ordonnée égale à k.

e. Résolution graphique d'une inéquation du type f(x) < k

EXEMPLE

Engrais
 Graphiquement, les solutions de l'inéquation f(x) < 8 sont les réels x ∈ [1; 1,5[∪]5,3; 6].

Propriété

On considère une fonction f et un réel k. On note \mathscr{C}_f la courbe de f dans un repère. Les solutions de l'inéquation f(x) < k sont les abscisses des points de la courbe \mathscr{C}_f d'ordonnée inférieure à k.

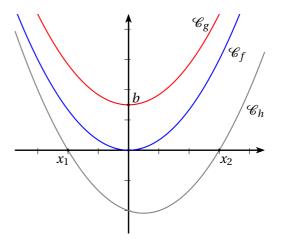
§ 2. Fonctions polynômes de degré 2

a. Représentations graphiques

PROPRIÉTÉ

On considère un repère (O; I, J).

- La courbe \mathcal{C}_f de la fonction f définie par $f(x) = ax^2$ est une parabole de sommet O, d'axe de symétrie l'axe des ordonnées, de branches « vers le haut » lorsque a > 0 et « vers le bas » lorsque a < 0.
- La courbe \(\mathscr{C}_g\) de la fonction g définie par g(x) = ax² + b est une parabole de sommet B (0; b), image de \(\mathscr{C}_f\) par la translation de vecteur \(\overline{OB}\).
- La courbe \mathcal{C}_h de la fonction h définie par $h(x) = a(x x_1)(x x_2)$ est une parabole qui coupe l'axe des abscisses aux points d'abscisses x_1 et x_2 .



b. Racines du polynôme du second degré

DÉFINITION

Les réels x_1 et x_2 s'appellent les *racines* du polynôme $f(x) = a(x - x_1)(x - x_2)$. Ce sont les deux solutions de l'équation f(x) = 0.

EXEMPLE

•
$$f(x) = x^2 - 4x + 3$$

On a: $f(1) = 1^2 - 4 \times 1 + 3 = 0$.
On a: $f(3) = 3^2 - 4 \times 3 + 3 = 0$.
D'où: $f(x) = (x - 1)(x - 3)$.

c. Signe du polynôme du second degré

Propriété

On considère la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$.

En ayant ordonné x_1 et x_2 , le tableau de signe de f est donné par :

х	;	$-\infty$		x_1		x_2		+∞
f(.	x)		signe de <i>a</i>	0	signe de – a	0	signe de <i>a</i>	

EXEMPLE

• $f(x) = x^2 - 4x + 3$

Puisque f(x) = (x-1)(x-3) et a > 0, alors le tableau de signe de f est donné par :

x	$-\infty$		1		3		+∞
f(x)		+	0	_	0	+	

§ 3. Fonctions polynômes de degré 3

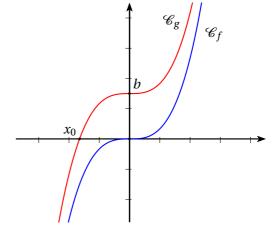
a. Représentations graphiques

Propriété

On considère un repère (O; I, J).

- La courbe \mathscr{C}_f de la fonction f définie par $f(x) = ax^3$ est une cubique de centre de symétrie O, « croissante » lorsque a > 0 et « décroissante » lorsque a < 0.
- La courbe \mathcal{C}_g de la fonction g définie par $g(x) = ax^3 + b$ est une cubique de centre de symétrie B (0; b), image de \mathcal{C}_f par la translation de vecteur \overrightarrow{OB} .

Elle coupe l'axe des abscisses en un unique point d'abscisse x_0 .



b. Racine cubique

DÉFINITION

On considère un réel k.

L'unique solution de l'équation $x^3 = k$ s'appelle la *racine cubique* du réel k.

NOTATION

On note $k^{1/3}$ la racine cubique d'un réel k.

EXEMPLE

•
$$8^{1/3} = 2 \operatorname{car} 2^3 = 8$$

•
$$(-8)^{1/3} = -2$$

•
$$(-8)^{1/3} = -2$$
 • $1,33 \ 1^{1/3} = 1,1$

c. Racines du polynôme du troisième degré

DÉFINITION

Les réels x_1 , x_2 et x_3 s'appellent les *racines* du polynôme $f(x) = a(x - x_1)(x - x_2)(x - x_3)$. Ce sont les trois solutions de l'équation f(x) = 0.

d. Signe du polynôme du troisième degré

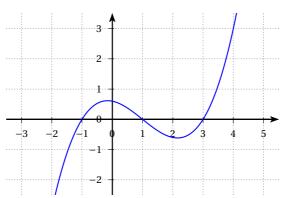
PROPRIÉTÉ

On considère la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$. En ayant ordonné x_1 , x_2 et x_3 , le tableau de signe de f est donné par :

x	-∞	x_1		x_2		<i>x</i> ₃		+∞
f(x)	sgn(-a)	0	sgn(a)	0	sgn(-a)	0	sgn(a)	

EXEMPLE

•
$$f(x) = \frac{1}{5}(x+1)(x-1)(x-3)$$



Puisque a > 0, alors le tableau de signe de f est donné par :

x	$-\infty$		-1		1		3		+∞
f(x)		_	0	+	0	_	0	+	

CHAPITRE

VARIABLES ALÉATOIRES

CONNAISSANCES ET CAPACITÉS

- Expérience aléatoire à deux épreuves indépendantes.
- Répétition d'épreuves de Bernoulli identiques et indépendantes.
- Probabilités associées.
- Variable aléatoire discrète : loi de probabilité, espérance.
- Loi de Bernoulli (0,1) de paramètre *p*, espérance.
- Représenter par un arbre de probabilités une expérience aléatoire à deux épreuves indépendantes.
- Déterminer les probabilités des événements associés aux différents chemins.
- Représenter par un arbre de probabilités la répétition de n épreuves de Bernoulli identiques et indépendantes avec n ≤ 4 afin de calculer des probabilités.
- Interpréter en situation les écritures $\{X = a\}$, $\{X \le a\}$ où X désigne une variable aléatoire.
- Calculer les probabilités correspondantes P(X = a), $P(X \le a)$.
- Calculer et interpréter en contexte l'espérance d'une variable aléatoire discrète.
- Reconnaître une situation aléatoire modélisée par une loi de Bernoulli.
- Simuler N échantillons de taille n d'une loi de Bernoulli.
- Représenter les fréquences observées des 1.
- Interpréter sur des exemples la distance à p de la fréquence observée des 1 dans un échantillon de taille n d'une loi de Bernoulli de paramètre p.

§ 1. Épreuves indépendantes

a. Épreuves indépendantes

EXEMPLE

• Menu

Un restaurant propose trois entrées E_1 , E_2 et E_3 et deux plats P_1 et P_2 . On choisit au hasard un menu composé d'une entrée et d'un plat.

Puisque le menu est choisi au hasard, alors le choix de l'entrée n'influe pas sur le choix du plat et vice-versa.

DÉFINITION

Deux épreuves aléatoires sont dites *indépendantes* si les issues de l'une n'ont aucune influence sur les issues de l'autre.

b. Arbre de probabilités

DÉFINITION

Un arbre de probabilités schématise le déroulement d'une expérience aléatoire.

Il est constitué:

- de nœuds, sur lesquels sont indiqués des événements;
- de branches, auxquelles sont affectées des probabilités;
- de chemins que l'on assimile à des intersections d'événements.

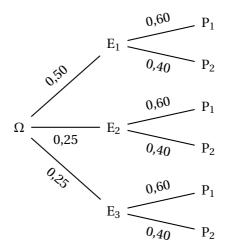
EXEMPLE

• Menu

L'entrée E_1 est tellement bonne qu'elle est choisie dans 50 % des cas, les entrées E_2 et E_3 dans 25 % des cas.

Le choix du plat est toujours indépendant de l'entrée, le plat P_1 est choisi dans 60 % des cas et le plat P_2 dans 40 % des cas.

L'arbre de probabilités qui schématise le choix du menu est donné par :



PROPRIÉTÉ

La probabilité d'un événement associé à un chemin est égale au produit des probabilités affectées à chaque branche de ce chemin.

EXEMPLE

• Menu

On a : $P(E_1 \cap P_1) = 0.50 \times 0.60 = 0.30$.

La probabilité de choisir le menu (E₁; P₁) est égale à 30 %.

c. Épreuve de Bernoulli

DÉFINITION

Une épreuve de Bernoulli de paramètre p est une expérience aléatoire qui n'a que deux issues possibles : une issue \overline{S} , appelée succès, de probabilité p, et une issue \overline{S} , appelée échec, de probabilité 1-p.

EXEMPLE

Urne

Une urne contient 40 boules blanches et 60 boules noires. On tire une boule de l'urne et on note sa couleur.

Soit S l'événement : « la boule tirée est blanche ».

On réalise une épreuve de Bernoulli de paramètre p = 0.4.

d. Répétition d'épreuves de Bernoulli identiques et indépendantes

DÉFINITION

Un *schéma de Bernoulli* de *paramètres n* et p est une expérience aléatoire qui consiste à répéter n fois et de manière indépendante une même épreuve de Bernoulli de paramètre p d'issues contraires S et E de probabilités p et 1-p.

Les issues sont donc des « mots » de n lettres, chaque lettre étant la lettre S ou la lettre E.

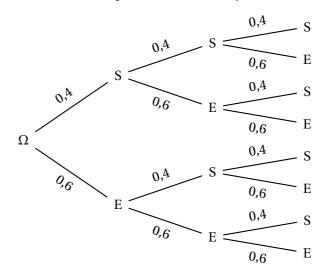
EXEMPLE

• Urne

Une urne contient 40 boules blanches et 60 boules noires. On tire successivement et avec remise trois boules de l'urne et on note leur couleur.

Soit S l'événement : « la boule tirée est blanche » lors d'un tirage.

On réalise un schéma de Bernoulli de paramètres n = 3 et p = 0.4.



Il y a huit issues : $\Omega = \{SSS ; SSE ; SES ; SEE ; ESS ; ESE ; EES ; EEE \}$.

PROPRIÉTÉ

La probabilité d'un événement est égale à la somme des probabilités de tous les chemins conduisant à cet événement.

EXEMPLE

• Urne

Soit A l'événement : « deux boules blanches sont tirées sur les trois ».

La probabilité d'obtenir deux boules blanches est réalisée par les issues SSE, SES et ESS.

On a: $P(SSE) = 0.4 \times 0.4 \times 0.6 = 0.096$. On a: $P(SES) = 0.4 \times 0.6 \times 0.4 = 0.096$. On a: $P(ESS) = 0.6 \times 0.4 \times 0.4 = 0.096$. D'où: P(A) = 0.096 + 0.096 + 0.096 = 0.288.

§ 2. Variables aléatoires

a. Variable aléatoire discrète

DÉFINITION

Soit Ω l'ensemble des issues d'une expérience aléatoire.

- Une variable aléatoire sur Ω est une fonction X qui associe à chaque issue de Ω un réel.
- On note $X(\Omega) = \{x_1; ...; x_n\}$ l'ensemble des valeurs prises par X.

EXEMPLE

· Jeu de cartes

Un joueur tire une carte au hasard d'un jeu de 32 cartes et perd $5 \in$ lorsque la carte tirée est un nombre pair, perd $4 \in$ lorsque la carte tirée est un nombre impair, et gagne $6 \in$ lorsque la carte tirée est une figure.

L'ensemble Ω est l'ensemble des 32 cartes.

Le gain du joueur est une variable aléatoire X sur Ω .

L'ensemble des gains est $X(\Omega) = \{-5; -4; +6\}$.

b. Loi de probabilité d'une variable aléatoire

DÉFINITION

Avec les notations précédentes :

- L'événement $\{X=x_i\}$ est l'ensemble des issues de Ω auxquelles on associe le réel x_i .
- La *probabilité* $p(X = x_i)$ est la probabilité de l'événement $\{X = x_i\}$, notée p_i .
- La loi de probabilité de la variable X est l'ensemble des couples $(x_i\;;\;p_i)$:

Valeur x_i	x_1	•••	x_n
Probabilité $p(X = x_i)$	p_1	•••	p_n

EXEMPLE

· Jeu de cartes

Il y a 8 nombres pairs: 8 et 10 dans chaque couleur.

Il y a 12 nombres impairs: 7, 9 et As dans chaque couleur.

Il y a 12 figures dans un jeu de 32 cartes : Valet, Dame et Roi dans chaque couleur Pique, Cœur, Carreau et Trèfle.

La loi de probabilité sur l'ensemble des gains $X(\Omega) = \{-5; -4; +6\}$ est donnée par :

Valeur x_i	-5	-4	+6
Probabilité $p(X = x_i)$	<u>8</u>	12	12
	32	32	32

c. Espérance mathématique d'une variable aléatoire

DÉFINITION

Avec les notations précédentes, l'*espérance mathématique* de la variable X, notée E(X), est définie par :

$$E(X) = p_1 x_1 + \dots + p_n x_n$$

EXEMPLE

· Jeu de cartes

On a:
$$E(X) = p_1 x_1 + p_2 x_2 + p_3 x_3 = \frac{8}{32} \times (-5) + \frac{12}{32} \times (-4) + \frac{12}{32} \times 6 = -0.5.$$

Lorsqu'on joue un très grand nombre de fois, on peut perdre en moyenne 0,50 €.

d. Loi de Bernoulli

DÉFINITION

On réalise une épreuve de Bernoulli de paramètre p.

La *loi de Bernoulli* de *paramètre* p est la loi de probabilité de la variable aléatoire X à valeurs dans $\{0; 1\}$ en ayant associé la valeur 1 au succès et la valeur 0 à l'échec.

Valeur x_i	0	1
Probabilité $p(X = x_i)$	1-p	p

Propriété

L'espérance mathématique de la loi de Bernoulli de paramètre p est donnée par :

$$E(X) = p$$

CHAPITRE

5

DÉRIVATION

CONNAISSANCES ET CAPACITÉS

- Sécantes à une courbe passant par un point donné.
- Tangente à une courbe en un point.
- Nombre dérivé en un point.
- Équation réduite de la tangente en un point.
- Fonction dérivée.
- Fonctions dérivées de : $x \mapsto x^2$ et $x \mapsto x^3$.
- Dérivée d'une somme, dérivée de $k \times f$ où k est un réel.
- Dérivée d'un polynôme de degré inférieur ou égal à 3.
- Sens de variations d'une fonction, lien avec le signe de la dérivée.
- Tableau de variations, extremums.
- Interpréter géométriquement le nombre dérivé comme coefficient directeur de la tangente.
- Construire la tangente à une courbe en un point.
- Déterminer l'équation réduite de la tangente à une courbe en un point.
- Calculer la dérivée d'une fonction polynôme de degré inférieur ou égal à trois.
- Déterminer le sens de variation et les extremums d'une fonction polynôme de degré inférieur ou égal à 3.

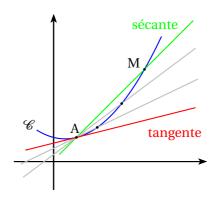
§ 1. Tangente à une courbe et nombre dérivé

a. Tangente à une courbe

DÉFINITION

On considère une fonction f définie sur un ensemble $\mathbb E$ et un point A sur la courbe $\mathscr C$ de la fonction f.

- Une *sécante* à la courbe $\mathscr C$ passant par le point A est une droite qui passe par A et par un autre point M de la courbe $\mathscr C$.
- La *tangente* à la courbe \mathscr{C} passant par le point A est la droite limite des sécantes lorsque le point M tend vers A.



CHAPITRE 5. DÉRIVATION

b. Nombre dérivé

REMARQUE

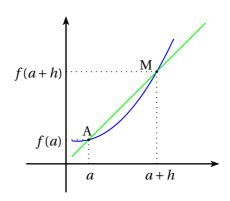
Dans les conditions précédentes :

On note *a* l'abscisse du point A.

On note h le réel tel que a+h soit l'abscisse du point M.

Le taux de variation de la fonction f entre a et a+h est donné par :

$$\frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$



DÉFINITION

Dans les conditions précédentes :

• La fonction f est $d\acute{e}rivable$ en a lorsque le taux de variation de f entre a et a+h admet une limite finie lorsque h tend vers 0.

On note alors:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

• Le réel f'(a) s'appelle le *nombre dérivé* de f en a.

c. Équation de la tangente à une courbe

Propriété

Dans les conditions précédentes :

Si la fonction f est dérivable en a, la tangente (T) à la courbe $\mathscr C$ au point A d'abscisse a est la droite qui passe par A et qui a pour coefficient directeur le réel f'(a).

Autrement dit:

(T):
$$y = mx + p$$
 avec
$$\begin{cases} m = f'(a) \\ p = f(a) - a \times f'(a) \end{cases}$$



EXEMPLE

• Soit f une fonction définie et dérivable sur \mathbb{R} telle que f(1) = 3 et f'(1) = -2. Soit (T) la tangente au point A d'abscisse 1.

On a: (T): y = mx + p.

On a : m = f'(1) = -2.

On a: $p = f(1) - 1 \times f'(1) = 3 - 1 \times (-2) = 5$.

D'où : (T) : y = -2x + 5.

§ 2. Fonction dérivée

a. Fonction dérivée

DÉFINITION

On considère une fonction f dérivable en tout réel $x \in \mathbb{E}$.

- On dit que f est $d\acute{e}rivable$ sur \mathbb{E} .
- La fonction f' définie sur $\mathbb E$ par l'expression f'(x) s'appelle la *fonction dérivée* de f.

Lycée Jean DROUANT

b. Fonction dérivée des fonctions usuelles

Propriété

Fonction <i>f</i>	Expression $f(x)$	Expression $f'(x)$
Constante	k	0
Linéaire	x	1
Affine	ax + b	a
Carrée	x^2	2x
Polynôme de degré 2	$ax^2 + bx + c$	2ax + b
Cube	x^3	$3x^2$
Polynôme de degré 3	$ax^3 + bx^2 + cx + d$	$3ax^2 + 2bx + c$

EXEMPLE

•
$$f(x) = 4x^2 - 5x + 6$$
.
On a: $f'(x) = 2 \times 4x - 5 = 8x - 5$.

On a:
$$f'(x) = 2 \times 4x - 5 = 8x - 5$$
.

•
$$g(x) = x^3 - x + 6$$
.

•
$$g(x) = x^3 - x + 6$$
.
On a: $g'(x) = 3x^2 - 1$.

c. Fonctions dérivées et opérations

Propriété

Soient u et v deux fonctions dérivables de fonctions dérivées u' et v', et soit k un réel.

Forme de la fonction f	Fonction dérivée f'
$k \times u$	$k \times u'$
u + v	u' + v'

REMARQUE

Cette **Propriété** justifie les formules de dérivation des fonctions polynômes de degré 2 ou 3 depuis les dérivées des fonctions affine, carrée et cube.

CHAPITRE 5. DÉRIVATION 27

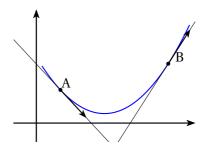
§ 3. Signe de la dérivée et sens de variations

a. Dérivée d'une fonction monotone

PROPRIÉTÉ

Soit f une fonction dérivable sur un intervalle \mathbb{E} .

- Si f est croissante sur \mathbb{E} , alors, pour tout $x \in \mathbb{E}$, on a: $f'(x) \ge 0$.
- Si f est décroissante sur \mathbb{E} , alors, pour tout $x \in \mathbb{E}$, on a : $f'(x) \le 0$.



b. Signe de la dérivée et sens de variations

THÉORÈME

Soit f une fonction dérivable sur un intervalle \mathbb{E} .

- Si, pour tout $x \in \mathbb{E}$, on a : $f'(x) \ge 0$, alors f est croissante sur \mathbb{E} .
- Si, pour tout $x \in \mathbb{E}$, on a : $f'(x) \le 0$, alors f est décroissante sur \mathbb{E} .

MÉTHODE

Pour étudier le sens de variations d'une fonction dérivable f de fonction dérivée f':

- On calcule la fonction dérivée f' de la fonction f.
- On étudie le signe de f'(x).
- On utilise le **THÉORÈME** précédent.

EXERCICE

Étudier la fonction f définie sur l'intervalle [2 ; 10] par $f(x) = \frac{1}{2}x^2 - 4x + 5$.

SOLUTION

La fonction f est dérivable sur l'intervalle [2 ; 10] et, pour tout $x \in [2 ; 10]$, on a :

$$f'(x) = 2 \times \frac{1}{2}x - 4 = x - 4$$

Le tableau de signes de la fonction dérivée f' et le tableau de variations de la fonction f qui en découle sont donnés par :

x	2		4		10
f'(x)		-	0	+	
f(x)	-1 _		-3		→ 15

Le minimum de la fonction f est -3 atteint en 4.

CHAPITRE 5. DÉRIVATION 28

ANNEXE

AUTOMATISMES

§ 1. Proportions et pourcentages

a. Calculer une proportion

QUESTION: Quelle proportion représentent 8 garçons dans une classe de 20 élèves?

RÉPONSE:
$$\frac{8}{20} = 0.40 = 40 \%.$$

b. Appliquer une proportion

QUESTION: Calculer 20 % de 350.

RÉPONSE :
$$20 \% \text{ de } 350 = 0.20 \times 350 = 70.$$

c. Calculer la proportion d'une proportion

QUESTION: Calculer 75 % de 20 %.

RÉPONSE : 75 % de 20 % = $0.75 \times 0.20 = 0.15 = 15$ %.

§ 2. Calcul numérique et algébrique

a. Additionner (ou soustraire ou comparer) deux fractions

QUESTION: Calculer $\frac{2}{5} + \frac{3}{4}$.

RÉPONSE:
$$\frac{2}{5} + \frac{3}{4} = \frac{8}{20} + \frac{15}{20} = \frac{23}{20}$$
.

b. Multiplier (ou diviser) deux fractions

QUESTION: Calculer $\frac{2}{5} \times \frac{3}{4}$.

RÉPONSE:
$$\frac{2}{5} \times \frac{3}{4} = \frac{6}{20} = \frac{3}{10}$$
.

30

c. Effectuer des opérations sur les puissances

QUESTION: Calculer 5×2^3 .

RÉPONSE: $5 \times 2^3 = 5 \times 8 = 40$.

d. Passer d'une écriture d'un nombre à une autre

QUESTION: Donner l'écriture scientifique de 15 000.

RÉPONSE: $15\,000 = 1.5 \times 10^4$.

e. Estimer un ordre de grandeur

QUESTION: Combien de « pots lyonnais » de 46 cl puis-je remplir avec un « cubi » de 3 litres?

RÉPONSE : $46 \text{ cl} \simeq 50 \text{ cl}$, $3 \text{ litres} \equiv 300 \text{ cl}$ et $300 \div 50 = 6$, donc environ 6 « pots lyonnais ».

f. Effectuer des conversions d'unités

QUESTION: Convertir 33 cl en cm³.

RÉPONSE: 33 cl \equiv 0,33 litre et 1 litre \equiv 1 000 cm³, donc 33 cl \equiv 330 cm³.

g. Isoler une variable dans une égalité ou une inégalité

QUESTION: Si $P = RI^2$, alors combien vaut R en fonction de P et I?

RÉPONSE: $R = \frac{P}{I^2}$.

h. Effectuer une application numérique d'une formule

QUESTION: Le volume V d'une casserole de rayon r et de hauteur h est : $V = 3.14 \times r^2 \times h$. Quel est le volume d'une casserole de rayon 10 cm et de hauteur 10 cm?

RÉPONSE: $V = 3.14 \times 10^2 \times 10 = 3.14 \times 1000 = 3140 \text{ cm}^3 = 3.14 \text{ litres}.$

i. Réduire une expression

QUESTION: Réduire $3x^2 \times (-7x)$.

RÉPONSE: $3x^2 \times (-7x) = -21x^3$.

Annexe A. Automatismes

j. Développer une expression

QUESTION: Développer -2x(5-3x).

RÉPONSE: $-2x(5-3x) = -2x \times 5 + 2x \times 3x = -10x + 6x^2$.

k. Factoriser une expression

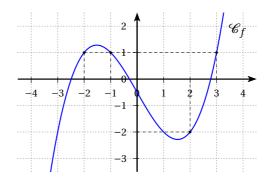
QUESTION: Factoriser 2(x-1) - (3-x)(x-1).

RÉPONSE : 2(x-1)-(3-x)(x-1)=(x-1)(2-(3-x))=(x-1)(-1+x).

§ 3. Fonctions et représentations

a. Déterminer graphiquement des images et des antécédents

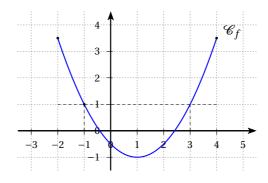
QUESTION : Indiquer l'image de 2 et les antécédents de 1 par la fonction f.



RÉPONSE : L'image de 2 est -2 et les antécédents de 1 sont -2, -1 et 3.

b. Résoudre graphiquement une équation ou une inéquation

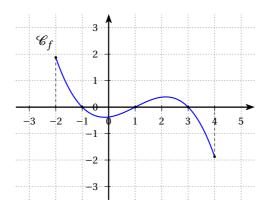
QUESTION: Résoudre l'équation f(x) = 1 et l'inéquation f(x) > 1.



RÉPONSE: $f(x) = 1 \Leftrightarrow x = -1 \text{ ou } x = 3 \text{ et } f(x) > 1 \Leftrightarrow x \in [-2; -1[\cup]3; 4].$

c. Déterminer graphiquement le signe d'une fonction

QUESTION: Déterminer le tableau de signes de la fonction f.

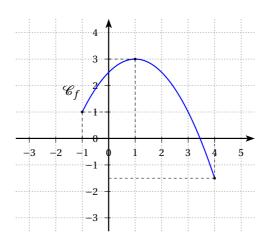


RÉPONSE:

х	-2	-1			1		3		4
f(x)		+	0	_	0	+	0	-	

d. Déterminer graphiquement le tableau de variations d'une fonction

QUESTION : Déterminer le tableau de variations de la fonction f.



RÉPONSE:

x	-1	1	4
f(x)	1	3	-1.5

e. Exploiter une équation de courbe

QUESTION: Le point A (1; -4) appartient-t-il à la courbe $\mathscr C$ d'équation $y = x^2 - 5$?

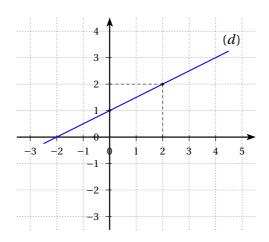
RÉPONSE: $1^2 - 5 = 1 - 5 = -4$.

Puisque $y_A = x_A^2 - 5$ alors oui $A \in \mathcal{C}$.

f. Tracer une droite donnée par son équation réduite

QUESTION: Tracer la droite (*d*) d'équation réduite $y = \frac{1}{2}x + 1$.

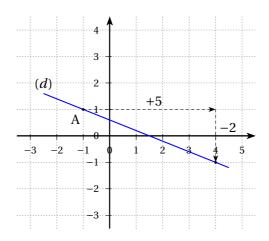
RÉPONSE : Lorsque x = 0, $y = \frac{1}{2} \times 0 + 1 = 1$ et lorsque x = 2, $y = \frac{1}{2} \times 2 + 1 = 2$.



g. Tracer une droite donnée par un point et son coefficient directeur

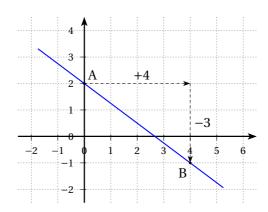
QUESTION: Tracer la droite (d) passant par A (-1; 1) et de coefficient directeur $-\frac{2}{5}$.

RÉPONSE:



h. Lire graphiquement l'équation réduite d'une droite

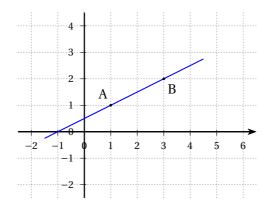
QUESTION: Donner l'équation réduite de la droite (AB).



RÉPONSE : L'équation réduite de la droite (AB) est $y = -\frac{3}{4}x + 2$.

i. Déterminer l'équation réduite d'une droite à partir de deux de ses points

QUESTION: Donner l'équation réduite de la droite (AB) sachant que A (1; 1) et B (3; 2).



RÉPONSE : D'une manière générale, l'équation réduite de (AB) est de la forme y = ax + b.

D'une part :
$$a = \frac{\Delta y}{\Delta x} = \frac{y_{\rm B} - y_{\rm A}}{x_{\rm B} - x_{\rm A}} = \frac{1}{2}$$
. D'autre part : $b = y_{\rm A} - ax_{\rm A} = 1 - \frac{1}{2} \times 1 = \frac{1}{2}$.

L'équation réduite de la droite (AB) est $y = \frac{1}{2}x + \frac{1}{2}$.

§ 4. Évolutions et variations

a. Passer d'une formulation additive à une formulation multiplicative

QUESTION: Par quel nombre doit-on multiplier une grandeur qui diminue de 5 %?

RÉPONSE: 1 + (-0.05) = 0.95. On doit multiplier la grandeur par 0.95.

b. Appliquer un taux d'évolution pour calculer une valeur finale ou initiale

QUESTION: Quel est le nouveau prix d'un article de 80 € soldé 30 %?

RÉPONSE: $(1-0.30) \times 80 = 0.70 \times 80 = 56$. L'article coûte maintenant $56 \in$.

c. Calculer un taux d'évolution

QUESTION: Quel est le taux d'évolution d'un volume qui passe de 4 litres à 3 litres?

RÉPONSE: $\frac{3-4}{4} = -\frac{1}{4} = -0,25$. Le volume a diminué de 25 %.

d. Interpréter ou calculer un indice

QUESTION: Comment interpréter un indice qui passe de 100 à 120 entre deux années?

RÉPONSE: Cela signifie qu'il y a eu une hausse de 20 % entre les deux années.

e. Calculer le taux d'évolution équivalent à plusieurs évolutions successives

QUESTION: Calculer le taux d'évolution équivalent à 2 hausses successives de 10 % et 20 %.

RÉPONSE : $(1+0,10) \times (1+0,20) = 1,10 \times 1,20 = 1,32$. Le taux équivalent est 32 %.

f. Calculer un taux d'évolution réciproque

QUESTION: Calculer le taux d'évolution réciproque de 25 %.

RÉPONSE : $\frac{1}{1+0.25} = \frac{1}{1.25} = 0.80$. Le taux réciproque est -20 %.

§ 5. Calcul numérique et algébrique

a. Résoudre une équation ou une inéquation du premier degré

QUESTION: Résoudre l'inéquation 2x - 5 < 3x + 2.

RÉPONSE: $2x-5 < 3x+2 \Leftrightarrow 2x-3x < 2+5 \Leftrightarrow -x < 7 \Leftrightarrow x > -7$.

b. Résoudre une équation du type $x^2 = a$

QUESTION: Résoudre l'équation $x^2 = 5$.

RÉPONSE: $x^2 = 5 \Leftrightarrow x = -\sqrt{5}$ ou $x = \sqrt{5}$.

c. Déterminer le signe d'une expression du premier degré

QUESTION: Dresser le tableau de signes de f(x) = -x + 2.

RÉPONSE: Puisque -1 < 0:

x	$-\infty$		-2		+∞
f(x)		+	0	-	

d. Déterminer le signe d'une expression factorisée du second degré

QUESTION: Dresser le tableau de signes de f(x) = 2(x-1)(x-3).

RÉPONSE: Puisque 2 > 0:

x	$-\infty$		1		3		+∞
f(x)		+	0	_	0	+	

§ 6. Représentations graphiques de données chiffrées

- a. Lire un graphique
- b. Lire un histogramme
- c. Lire un diagramme en barres ou circulaire
- d. Lire un diagramme en boîte
- e. Repérer l'origine du repère, les unités de graduations ou les échelles
- f. Passer du graphique aux données et vice-versa